

Universal Variable Speed AC Drive for induction and servo motors

General Information

The manufacturer accepts no liability for any consequences resulting from inappropriate, negligent or incorrect installation or adjustment of the optional operating parameters of the equipment or from mismatching the variable speed drive with the motor.

The contents of this guide are believed to be correct at the time of printing. In the interests of a commitment to a policy of continuous development and improvement, the manufacturer reserves the right to change the specification of the product or its performance, or the contents of the guide, without notice.

All rights reserved. No parts of this guide may be reproduced or transmitted in any form or by any means, electrical or mechanical including photocopying, recording or by an information storage or retrieval system, without permission in writing from the publisher.

Drive software version

This product is supplied with the latest version of software. If this product is to be used in a new or existing system with other drives, there may be some differences between their software and the software in this product. These differences may cause this product to function differently. This may also apply to drives returned from an EPA Service Centre.

The software version of the drive can be checked by looking at Pr **11.29** (or Pr **0.50**) and Pr **11.34**. The software version takes the form of zz.yy.xx, where Pr **11.29** displays zz.yy and Pr **11.34** displays xx, i.e. for software version 01.01.00, Pr **11.29** would display 1.01 and Pr **11.34** would display 0.

If there is any doubt, contact EPA.

Environmental statement

EPA is committed to minimising the environmental impacts of its manufacturing operations and of its products throughout their life cycle. To this end, we operate an Environmental Management System (EMS) which is certified to the International Standard ISO 14001. Further information on the EMS, our Environmental Policy and other relevant information is available on request.

The electronic variable-speed drives manufactured by EPA have the potential to save energy and (through increased machine/process efficiency) reduce raw material consumption and scrap throughout their long working lifetime. In typical applications, these positive environmental effects far outweigh the negative impacts of product manufacture and end-of-life disposal.

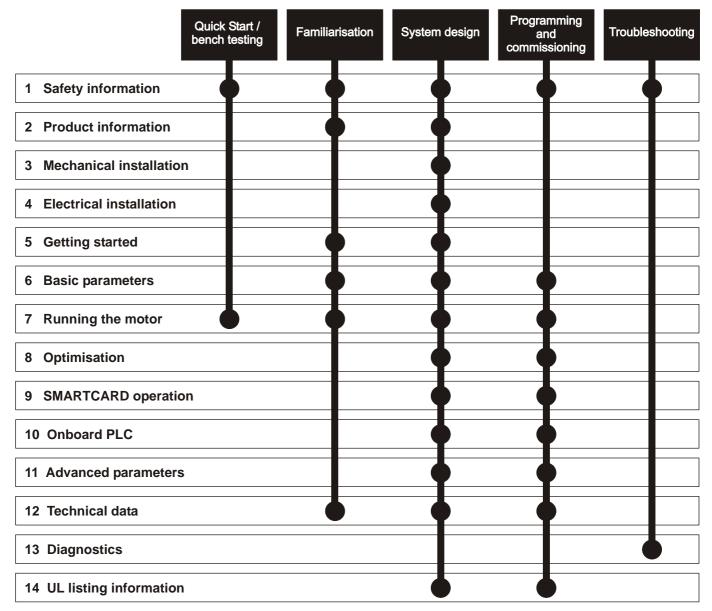
Nevertheless, when the products eventually reach the end of their useful life, they can very easily be dismantled into their major component parts for efficient recycling. Many parts snap together and can be separated without the use of tools, while other parts are secured with conventional screws. Virtually all parts of the product are suitable for recycling.

Product packaging is of good quality and can be re-used. Large products are packed in wooden crates, while smaller products come in strong cardboard cartons which themselves have a high recycled fibre content. If not re-used, these containers can be recycled. Polythene, used on the protective film and bags for wrapping product, can be recycled in the same way. EPA' packaging strategy favours easily-recyclable materials of low environmental impact, and regular reviews identify opportunities for improvement.

When preparing to recycle or dispose of any product or packaging, please observe local legislation and best practice.

Copyright © October 2005 Issue Number: 11 Software: 01.08.01 onwards

How to use this guide


This user guide provides complete information for installing and operating a Unidrive SP from start to finish.

The information is in logical order, taking the reader from receiving the drive through to fine tuning the performance.

NOTE

There are specific safety warnings throughout this guide, located in the relevant sections. In addition, Chapter 1 *Safety Information* contains general safety information. It is essential that the warnings are observed and the information considered when working with or designing a system using the drive.

This map of the user guide helps to find the right sections for the task you wish to complete:

Contents

	Declaration of Conformity (Size 1 to 3)6 Declaration of Conformity (Size 4 and 5) 7 Declaration of Conformity (Size 6)
1 1.1 1.2 1.3 1.4 1.5 1.6 1.7	Safety Information10Warnings, Cautions and Notes10Electrical safety - general warning10System design and safety of personnel10Environmental limits10Compliance with regulations10Motor10Adjusting parameters10
2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8	Product Information11Ratings11Model number15Operating modes15Compatible encoders16Drive features17Nameplate description19Options20Items supplied with the drive22
3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.15	Mechanical Installation25Safety information25Planning the installation26Terminal cover removal26Baying free standing cubicles32Solutions Module fitting / removal38Mounting methods39Free standing cubicle drive dimensions48Enclosure51Cubicle design and drive ambient temperature52Heatsink fan operation53IP Rating (Ingress Protection)53External EMC filter55Heatsink mounted braking resistor60Electrical terminals63Routine maintenance65

4	Electrical Installation	6
4.1	Power connections	6
4.2	AC supply requirements72	2
4.3	Supplying the drive with DC / DC bus paralleling 73	
4.4	Heatsink fan supply73	
4.5	Control 24Vdc supply	
4.6	Low voltage DC power supply	
4.7 4 9	Ratings	
4.8 4.9	Braking	
4.10	Ground leakage	
4.11	EMC (Electromagnetic compatibility)	
4.12	Serial communications connections	
4.13	Control connections	
4.14	Encoder connections	
4.15	Low voltage DC mode enable and heatsink fan	
	supply connections (size 4 to 6)	
4.16	SECURE DISABLE 100	0
5	Getting Started 102	2
5.1	Understanding the display 102	2
5.2	Keypad operation 102	2
5.3	Menu structure 103	3
5.4	Menu 0 104	
5.5	Advanced menus 104	
5.6	Changing the operating mode	
5.7	Saving parameters	
5.8	Restoring parameter defaults	
5.9 5.10	Parameter access level and security	D
5.10	only	7
5.11	Displaying destination parameters only	
5.12	Serial communications	
6	Basic parameters (Monu 0) 100	n
0 6.1	Basic parameters (Menu 0) 109 Single line descriptions	
6.1 6.2	Full descriptions	
0.2		
7	Running the motor124	
7.1	Quick start Connections 124	
7.2	Changing the operating mode 124	
7.3	Quick Start commissioning	
7.4	Quick start commissioning (CTSoft) 134	4
7.5	Setting up a feedback device 134	4
8	Optimisation138	
8.1	Motor map parameters 138	
8.2	Maximum motor rated current	
8.3	Current limits	
8.4 9 5	Motor thermal protection	
8.5 8.6	Switching frequency	
0.0	High speed operation149	I

9 9.1 9.2 9.3 9.4 9.5 10 10.1 10.2 10.3 10.4 10.5	SMARTCARD operation151Introduction151Transferring data152Data block header information154SMARTCARD parameters154SMARTCARD trips155Onboard PLC157Onboard PLC and SYPTLite157Limitations157Getting started158Onboard PLC parameters158
10.6 10.7	Onboard PLC trips
11 11.1 11.2 11.3 11.4	Advanced parameters160 Menu 1: Frequency / speed reference
11.5 11.6 11.7 11.8 11.9	Menu 5: Motor control184Menu 6: Sequencer and clock189Menu 7: Analogue I/O191Menu 8: Digital I/O194Menu 9: Programmable logic, motorised pot198
11.11 11.12	Menu 10: Status and trips
11.14 11.15 11.16 11.17 11.18 11.19 11.20	Menu 14: User PID controller214Menus 15, 16 and 17: Solutions Module set-up 217Menu 18: Application menu 1245Menu 19: Application menu 2245Menu 20: Application menu 3245Menu 21: Second motor parameters246Menu 22: Additional Menu 0 set-up247
12	Advanced features248 Technical Data257
12.1 12.2	Drive
13 13.1 13.2 13.3 13.4	Diagnostics275Trip indications275Alarm indications290Status indications291Displaying the trip history291
14 14.1 14.2 14.3 14.4 14.5 14.6	UL Listing Information292Common UL information292Power dependant UL information292AC supply specification292Maximum continuous output current292Safety label292UL listed accessories292

List of figures	293
List of tables	296
Index	298

SP1201	SP1202	SP1203	SP1204
SP2201	SP2202	SP2203	
SP3201	SP3202		

SP1401	SP1402	SP1403	SP1404	SP1405	SP1406
SP2401	SP2402	SP2403	SP2404		
SP3401	SP3402	SP3403			

SP3501 SP3502 SP3503 SP3504 SP3505 SP3506 SP3507

The AC variable speed drive products listed above have been designed and manufactured in accordance with the following European harmonised standards:

EN 50178	Electronic equipment for use in power installations
EN 61800-3	Adjustable speed electrical power drive systems. EMC product standard including specific test methods
EN 61000-6-2	Electromagnetic compatibility (EMC). Generic standards. Immunity standard for industrial environments
EN 61000-6-4	Electromagnetic compatibility (EMC). Generic standards. Emission standard for industrial environments
EN 50081-2	Electromagnetic compatibility. Generic emission standard. Industrial environment
EN 50082-2	Electromagnetic compatibility. Generic immunity standard. Industrial environment
EN 61000-3-2 ¹	Electromagnetic compatibility (EMC). Limits. Limits for harmonic current emissions (equipment input current up to and including 16 A per phase)
EN 61000-3-3	Electromagnetic compatibility (EMC). Limits. Limitation of voltage fluctuations and flicker in low- voltage supply systems for equipment with rated current <= 16 A

¹ These products are for professional use, and power input exceeds 1kW for all models, so no limits apply.

These products comply with the Low Voltage Directive 73/23/EEC, the Electromagnetic Compatibility (EMC) Directive 89/336/EEC and the CE Marking Directive 93/68/EEC.

Executive Vice President, Technology

Date: 22nd July 2004

These electronic drive products are intended to be used with appropriate motors, controllers, electrical protection components and other equipment to form complete end products or systems. Compliance with safety and EMC regulations depends upon installing and configuring drives correctly, including using the specified input filters. The drives must be installed only by professional assemblers who are familiar with requirements for safety and EMC. The assembler is responsible for ensuring that the end product or system complies with all the relevant laws in the country where it is to be used. Refer to this User Guide. An EMC Data Sheet is also available giving detailed EMC information.

Declaration of Conformity (Size 4 and 5)

SP4201	SP4202	SP4203			
SP4401	SP4402	SP4403			
SP5401	SP5402				
SP4601	SP4602	SP4603	SP4604	SP4605	SP4606
SP5601	SP5602				

The AC variable speed drive products listed above have been designed and manufactured in accordance with the following European harmonised standards:

EN 61800-5-1	Adjustable speed electrical power drive systems - safety requirements - electrical, thermal and energy
EN 61800-3	Adjustable speed electrical power drive systems. EMC product standard including specific test methods
EN 61000-6-2	Electromagnetic compatibility (EMC). Generic standards. Immunity standard for industrial environments
EN 61000-6-4	Electromagnetic compatibility (EMC). Generic standards. Emission standard for industrial environments

These products comply with the Low Voltage Directive 73/23/EEC, the Electromagnetic Compatibility (EMC) Directive 89/336/EEC and the CE Marking Directive 93/68/EEC.

- n.C.

Executive Vice President, Technology

Date: 17th January 2005

These electronic drive products are intended to be used with appropriate motors, controllers, electrical protection components and other equipment to form complete end products or systems. Compliance with safety and EMC regulations depends upon installing and configuring drives correctly, including using the specified input filters. The drives must be installed only by professional assemblers who are familiar with requirements for safety and EMC. The assembler is responsible for ensuring that the end product or system complies with all the relevant laws in the country where it is to be used. Refer to the User Guide. An EMC Data Sheet is also available giving detailed EMC information.

Declaration of Conformity (Size 6)

SP6401	SP6402	
SP6601	SP6602	

The AC variable speed drive products listed above have been designed and manufactured in accordance with the following European harmonised standards:

EN 61800-5-1	Adjustable speed electrical power drive systems - safety requirements - electrical, thermal and energy
EN 61800-3	Adjustable speed electrical power drive systems. EMC product standard including specific test methods
EN 61000-6-2	Electromagnetic compatibility (EMC). Generic standards. Immunity standard for industrial environments

These products comply with the Low Voltage Directive 73/23/EEC, the Electromagnetic Compatibility (EMC) Directive 89/336/EEC and the CE Marking Directive 93/68/EEC.

ンント

Executive Vice President, Technology

Date: 17th January 2005

These electronic drive products are intended to be used with appropriate motors, controllers, electrical protection components and other equipment to form complete end products or systems. Compliance with safety and EMC regulations depends upon installing and configuring drives correctly, including using the specified input filters. The drives must be installed only by professional assemblers who are familiar with requirements for safety and EMC. The assembler is responsible for ensuring that the end product or system complies with all the relevant laws in the country where it is to be used. Refer to the User Guide. An EMC Data Sheet is also available giving detailed EMC information.

SP8411	SP8412	SP8413	SP8414	
SP9411	SP9412	SP9413	SP9414	SP9415

The AC variable speed drive products listed above have been designed and manufactured in accordance with the following European harmonised standards:

EN 61800-5-1*	Adjustable speed electrical power drive systems - safety requirements - electrical, thermal and energy
EN 61800-3	Adjustable speed electrical power drive systems. EMC product standard including specific test methods
EN 61000-6-2	Electromagnetic compatibility (EMC). Generic standards. Immunity standard for industrial environments

*Clause 5.2.3.8 of EN 61800-5-1:2003 (breakdown of components test) has been amended to eliminate the 30A ground (earth) fuse, in accordance with the draft edition 2 of IEC 61800-5-1

These products comply with the Low Voltage Directive 73/23/EEC, the Electromagnetic Compatibility (EMC) Directive 89/336/EEC and the CE Marking Directive 93/68/EEC.

20-

Executive Vice President, Technology

Date: 11th October 2005

These electronic drive products are intended to be used with appropriate motors, controllers, electrical protection components and other equipment to form complete end products or systems. Compliance with safety and EMC regulations depends upon installing and configuring drives correctly, including using the specified input filters. The drives must be installed only by professional assemblers who are familiar with requirements for safety and EMC. The assembler is responsible for ensuring that the end product or system complies with all the relevant laws in the country where it is to be used. Refer to the User Guide. An EMC Data Sheet is also available giving detailed EMC information.

Safety	Product	Mechanical	Electrical	Getting	Basic	Running the	Optimisation	Smartcard	Onboard	Advanced	Technical	Diagnostics	UL Listing
Information	Information	Installation	Installation	Started	Parameters	motor	Optimisation	operation	PLC	Parameters	Data	Diagnostics	Information

1 Safety Information

1.1 Warnings, Cautions and Notes

A Warning contains information which is essential for avoiding a safety hazard.

A Caution contains information which is necessary for avoiding a risk of damage to the product or other equipment.

NOTE

A Note contains information which helps to ensure correct operation of the product.

1.2 Electrical safety - general warning

The voltages used in the drive can cause severe electrical shock and/or burns, and could be lethal. Extreme care is necessary at all times when working with or adjacent to the drive.

Specific warnings are given at the relevant places in this User Guide.

1.3 System design and safety of personnel

The drive is intended as a component for professional incorporation into complete equipment or a system. If installed incorrectly, the drive may present a safety hazard.

The drive uses high voltages and currents, carries a high level of stored electrical energy, and is used to control equipment which can cause injury.

Close attention is required to the electrical installation and the system design to avoid hazards either in normal operation or in the event of equipment malfunction. System design, installation, commissioning and maintenance must be carried out by personnel who have the necessary training and experience. They must read this safety information and this User Guide carefully.

The STOP and SECURE DISABLE functions of the drive do not isolate dangerous voltages from the output of the drive or from any external option unit. The supply must be disconnected by an approved electrical isolation device before gaining access to the electrical connections.

With the sole exception of the SECURE DISABLE function, none of the drive functions must be used to ensure safety of personnel, i.e. they must not be used for safety-related functions.

Careful consideration must be given to the functions of the drive which might result in a hazard, either through their intended behaviour or through incorrect operation due to a fault. In any application where a malfunction of the drive or its control system could lead to or allow damage, loss or injury, a risk analysis must be carried out, and where necessary, further measures taken to reduce the risk - for example, an over-speed protection device in case of failure of the speed control, or a fail-safe mechanical brake in case of loss of motor braking.

The SECURE DISABLE function has been approved¹ as meeting the requirements of EN954-1 category 3 for the prevention of unexpected starting of the drive. It may be used in a safety-related application. The system designer is responsible for ensuring that the complete system is safe and designed correctly according to the relevant safety standards.

¹Independent approval by BGIA has been given.

1.4 Environmental limits

Instructions in this User Guide regarding transport, storage, installation and use of the drive must be complied with, including the specified environmental limits. Drives must not be subjected to excessive physical force.

1.5 Compliance with regulations

The installer is responsible for complying with all relevant regulations, such as national wiring regulations, accident prevention regulations and electromagnetic compatibility (EMC) regulations. Particular attention must be given to the cross-sectional areas of conductors, the selection of fuses or other protection, and protective earth (ground) connections.

This User Guide contains instruction for achieving compliance with specific EMC standards.

Within the European Union, all machinery in which this product is used must comply with the following directives:

98/37/EC: Safety of machinery. 89/336/EEC: Electromagnetic Compatibility.

1.6 Motor

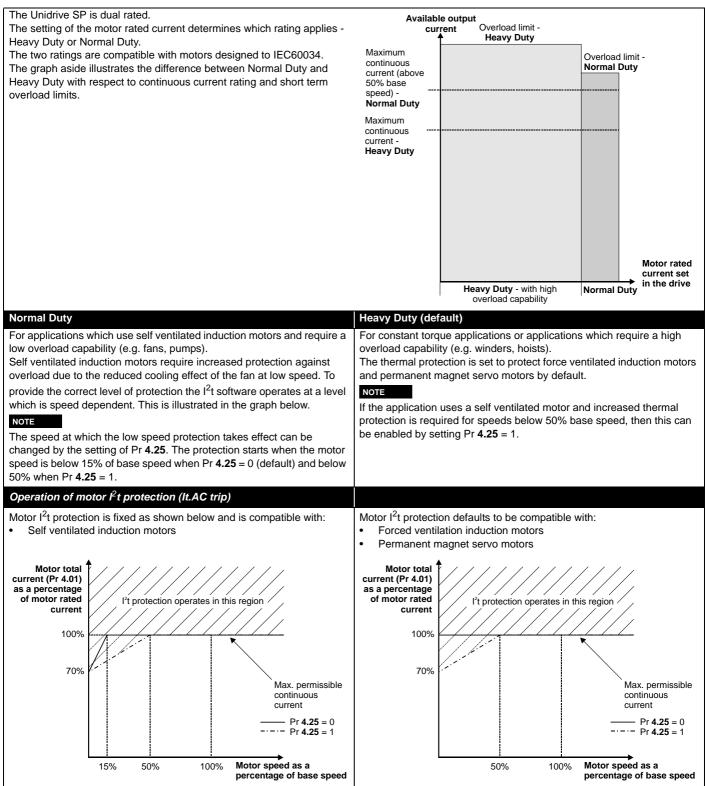
Ensure the motor is installed in accordance with the manufacturer's recommendations. Ensure the motor shaft is not exposed.

Standard squirrel cage induction motors are designed for single speed operation. If it is intended to use the capability of the drive to run a motor at speeds above its designed maximum, it is strongly recommended that the manufacturer is consulted first.

Low speeds may cause the motor to overheat because the cooling fan becomes less effective. The motor should be fitted with a protection thermistor. If necessary, an electric forced vent fan should be used.

The values of the motor parameters set in the drive affect the protection of the motor. The default values in the drive should not be relied upon.

It is essential that the correct value is entered in parameter **0.46** motor rated current. This affects the thermal protection of the motor.


1.7 Adjusting parameters

Some parameters have a profound effect on the operation of the drive. They must not be altered without careful consideration of the impact on the controlled system. Measures must be taken to prevent unwanted changes due to error or tampering.

Safety	Product	Mechanical	Electrical	Getting		Running the	Optimisation	Smartcard	Onboard	Advanced	Technical	Diagnostics	UL Listing
Information	Information	Installation	Installation	Started	Parameters	motor		operation	PLC	Parameters	Data	•	Information

2 **Product Information**

2.1 Ratings

T	Safety	Product	Mechanical	Electrical	Getting	_	Running the	Optimisation	Smartcard	Onboard	Advanced	Technical	Diagnostics	UL Listing
	Information	Information	Installation	Installation	Started	Parameters	motor	opumouton	operation	PLC	Parameters	Data	Diagnootice	Information

The continuous current ratings given are for maximum 40°C (104°F), 1000m altitude and 3.0 kHz switching. Derating is required for higher switching frequencies, ambient temperature >40°C (104°F) and high altitude. For further information, refer to section 12.1.1 *Power and current ratings (Derating for switching frequency and temperature)* on page 257.

Table 2-1 200V Drive ratings (200V to 240V ±10%)

			Normal I	Duty				Heavy Duty		
Model		Maximum continuous output current	Nominal power at 220V	Motor power at 230V	Peak current	Maximum continuous output current	Open loop peak current	Closed loop peak current	Nominal power at 220V	Motor power at 230V
		A	kW	hp	Α	Α	Α	Α	kW	hp
	1201	5.2	1.1	1.5	5.7	4.3	6.4	7.5	0.75	1.0
	1202	6.8	1.5	2.0	7.4	5.8	8.7	10.1	1.1	1.5
M	1203	9.6	2.2	3.0	10.5	7.5	11.2	13.1	1.5	2.0
	1204	11	3.0	3.0	12.1	10.6	15.9	18.5	2.2	3.0
	2201	15.5	4.0	5.0	17.0	12.6	18.9	22	3.0	3.0
	2202	22	5.5	7.5	24.2	17	25.5	29.7	4.0	5.0
	2203	28	7.5	10	30.8	25	37.5	43.7	5.5	7.5
•	3201	42	11	15	46	31	46.5	54.2	7.5	10
	3202	54	15	20	59	42	63	73.5	11	15
- i -	4201	68	18.5	25	74	56	84	98	15	20
	4202	80	22	30	88	68	102	119	18.5	25
	4203	104	30	40	114	80	120	140	22	30

Table 2-2 400V Drive ratings (380V to 480V ±10%)

			Normal	Duty				Heavy Duty		
Model		Maximum continuous output current	Nominal power at 400V	Motor power at 460V	Peak current	Maximum continuous output current	Open loop peak current	Closed loop peak current	Nominal power at 400V	Motor power at 460V
		Α	kW	hp	Α	Α	Α	Α	kW	hp
	1401	2.8	1.1	1.5	3.0	2.1	3.1	3.6	0.75	1.0
	1402	3.8	1.5	2.0	4.1	3.0	4.5	5.2	1.1	2.0
	1403	5.0	2.2	3.0	5.5	4.2	6.3	7.3	1.5	3.0
M	1404	6.9	3.0	5.0	7.5	5.8	8.7	10.1	2.2	3.0
	1405	8.8	4.0	5.0	9.6	7.6	11.4	13.3	3.0	5.0
	1406	11	5.5	7.5	12.1	9.5	14.2	16.6	4.0	5.0
	2401	15.3	7.5	10	16.8	13	19.5	22.7	5.5	10
	2402	21	11	15	23	16.5	24.7	28.8	7.5	10
M	2403	29	15	20	31	25	34.5	40.2	11	20
	2404					29	43.5	50.7	15	20
	3401	35	18.5	25	38	32	48	56	15	25
° 73	3402	43	22	30	47	40	60	70	18.5	30
	3403	56	30	40	61	46	69	80.5	22	30
-å-	4401	68	37	50	74	60	90	105	30	50
	4402	83	45	60	91	74	111	129.5	37	60
• M *	4403	104	55	75	114	96	144	168	45	75
	5401	138	75	100	151	124	186	217	55	100
	5402	168	90	125	184	156	234	273	75	125

	Safety Information	Product Information	Mechanical Installation	Electrical Installation	Getting Started	Basic Parameters	Running the motor	Optimisation	Smartcard operation	Onboard PLC	Advanced Parameters	Technical Data	Diagnostics	UL Listing Information
--	-----------------------	------------------------	----------------------------	----------------------------	--------------------	---------------------	-------------------	--------------	---------------------	----------------	------------------------	-------------------	-------------	---------------------------

Table 2-2 400	/ Drive ratin	gs (380V to 480	V ±10%) Normal	Duty				Heavy Duty		
Mode	I	Maximum continuous output current	Nominal power at 400V	Motor power at 460V	Peak current	Maximum continuous output current	Open loop peak current	Closed loop peak current	Nominal power at 400V	Motor power at 460V
		A	kW	hp	Α	А	Α	Α	kW	hp
	6401	205	110	150	225	180	231	269	90	150
	6402	236	132	200	259	210	270	315	110	150
	8411	389	225	300	428	335	432	503	185	280
	8412	450	250	400	495	389	502	584	225	300
	8413	545	315	450	600	450	581	675	250	400
	8414	620	355	500	682	545	703	818	315	450
	9411	690	400	600	759	620	800	930	355	500
Ø	9412	790	450	700	869	690	882	1026	400	600
9	9413	900	500	800	990	790	1019	1185	450	700
	9414	1010	560	900	1111	900	1125	1305	500	800
	9415	1164	675	1000	1280	1010	1303	1515	560	900

			Normal	Duty				Heavy Duty		
Mode	I	Maximum continuous output current	Nominal power at 575V	Motor power at 575V	Peak current	Maximum continuous output current	Open loop peak current	Closed loop peak current	Nominal power at 575V	Motor power at 575\
		Α	kW	hp	Α	Α	Α	Α	kW	hp
	3501	5.4	3.0	3.0	5.9	4.1	6.1	7.1	2.2	2.0
	3502	6.1	4.0	5.0	6.7	5.4	8.1	9.4	3.0	3.0
	3503	8.4	5.5	7.5	9.2	6.1	9.1	10.6	4.0	5.0
	3504	11	7.5 11	10 15	12.1	9.5 12	14.2 18	16.6 21	5.5	7.5 10
	3505 3506	16 22	11	15 20	17.6 24.2	12 18	18 27	21 31.5	7.5 11	10 15
_	3500	22	18.5	20	24.2	22	33	38.5	15	20
	4603	36	22	30	39.6	27	40.5	47.2	18.5	25
	4604	43	30	40	47.3	36	-+0.0 54	63	22	30
	4605		37	50	57.2	43	64.5	75.2	30	40
•	4606	62	45	60	68	52	78	91	37	50
	5601	84	55	75	92	63	93	108.5	45	60
	5602	99	75	100	108	85	126	147	55	75
	6601	125	90	125	137	100	128	149	75	100
	6602	144	110	150	158	125	160	187	90	125

The power ratings above for model size 4 and larger are for the 690V drives when used on a 500V to 575V supply.

Table 2-4 690V Drive ratings (500V to 690V ±10%)

			Normal	Duty				Heavy Duty		
Mode	I	Maximum continuous output current	Nominal power at 690V	Motor power at 690V	Peak current	Maximum continuous output current	Open loop peak current	Closed loop peak current	Nominal power at 690V	Motor power at 690V
		A	kW	hp	Α	Α	Α	Α	kW	hp
	4601	22	18.5	25	24.2	19	27	31.5	15	20
to the second se	4602	27	22	30	29.7	22	33	38.5	18.5	25
• 7	4603	36	30	40	39.6	27	40.5	47.2	22	30
	4604	43	37	50	47.3	36	54	63	30	40
P. M.	4605	52	45	60	57.2	43	64.5	75.2	37	50
	4606	62	55	75	68.2	52	78	91	45	60
	5601	84	75	100	92	63	93	108.5	55	75
0	5602	99	90	125	108	85	126	147	75	100
0 0 0 0	6601	125	110	150	137	100	128	149	90	125
0	6602	144	132	175	158	125	160	187	110	150

ĺ	Safety Information	Product Information	Mechanical Installation	Electrical Installation	Getting Started	Basic Parameters	Running the motor	Optimisation	Smartcard operation	Onboard PLC	Advanced Parameters	Technical Data	Diagnostics	UL Listing Information
	mormation	mormation	mataliation	matanation	Otaricu	1 arameters	motor		operation	I LO	1 arameters	Data		monnation

2.1.1 Typical short term overload limits

The maximum percentage overload limit changes depending on the selected motor. Variations in motor rated current, motor power factor and motor leakage inductance all result in changes in the maximum possible overload. The exact value for a specific motor can be calculated using the equations detailed in Menu 4 in the *Unidrive SP Advanced User Guide*.

Typical values are shown in the table below for closed loop vector (VT) and open loop (OL) modes:

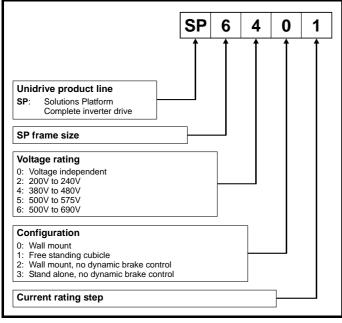
Table 2-5 Typical overload limits for size 1 to 5

Operating mode	Closed loop from cold	Closed loop from 100%	Open loop from cold	Open loop from 100%
Normal Duty overload with motor rated current = drive rated current	110% for 215s	110% for 5s	110% for 215s	110% for 5s
Heavy Duty overload with motor rated current = drive rated current	175% for 40s	175% for 5s	150% for 60s	150% for 8s
Heavy Duty overload with a typical 4 pole motor	200% for 28s	200% for 3s	175% for 40s	175% for 5s

Table 2-6 Typical overload limits for size 6 and above

Operating mode	Closed loop from cold	Closed loop from 100%	Open loop from cold	Open loop from 100%
Normal Duty overload with motor rated current = drive rated current	110% for 165s	110% for 9s	110% for 165s	110% for 9s
Heavy Duty overload with motor rated current = drive rated current	150% for 60s	150% for 8s	129% for 97s	129% for 15s

Generally the drive rated current is higher than the matching motor rated current allowing a higher level of overload than the default setting as illustrated by the example of a typical 4 pole motor.


The time allowed in the overload region is proportionally reduced at very low output frequency on some drive ratings.

NOTE

The maximum overload level which can be attained is independent of the speed.

2.2 Model number

The way in which the model numbers for the Unidrive SP range are formed is illustrated below.

2.3 Operating modes

The Unidrive SP is designed to operate in any of the following modes:

- 1. Open loop mode
 - Open loop vector Fixed V/F mode (V/Hz)
 - Quadratic V/F mode (V/Hz)
- 2. RFC mode
- 3. Closed loop vector
- 4. Servo
- 5. Regen

2.3.1 Open loop mode

For use with standard AC induction motors.

The drive applies power to the motor at frequencies varied by the user. The motor speed is a result of the output frequency of the drive and slip due to the mechanical load. The drive can improve the speed control of the motor by applying slip compensation. The performance at low speed depends on whether V/F mode or open loop vector mode is selected.

Open loop vector mode

The voltage applied to the motor is directly proportional to the frequency except at low speed where the drive uses motor parameters to apply the correct voltage to keep the flux constant under varying load conditions.

Typically 100% torque is available down to 1Hz for a 50Hz motor.

Fixed V/F mode

The voltage applied to the motor is directly proportional to the frequency except at low speed where a voltage boost is provided which is set by the user. This mode can be used for multi-motor applications.

Typically 100% torque is available down to 4Hz for a 50Hz motor.

Quadratic V/F mode

The voltage applied to the motor is directly proportional to the square of the frequency except at low speed where a voltage boost is provided which is set by the user. This mode can be used for running fan or pump applications with quadratic load characteristics or for multi-motor applications. This mode is not suitable for applications requiring a high starting torque.

2.3.2 RFC mode

For use with induction motors.

Rotor flux control uses closed loop current control which allows the same overload current as closed loop modes and elimates low load instability which can be associated with traditional open loop control.

2.3.3 Closed loop vector mode

For use with induction motors with a feedback device fitted.

The drive directly controls the speed of the motor using the feedback device to ensure the rotor speed is exactly as demanded. Motor flux is accurately controlled at all times to provide full torque all the way down to zero speed.

2.3.4 Servo

For use with permanent magnet brushless motors with a feedback device fitted.

The drive directly controls the speed of the motor using the feedback device to ensure the rotor speed is exactly as demanded. Flux control is not required because the motor is self excited by the permanent magnets which form part of the rotor.

Absolute position information is required from the feedback device to ensure the output voltage is accurately matched to the back EMF of the motor. Full torque is available all the way down to zero speed.

Safety Product Mechanical Electrical Getting Basic Running the motor Optimisation Information Installation Installation Started Parameters Motor Optimisation	n Smartcard operation	Onboard PLC	Advanced Parameters	Technical Data	Diagnostics	UL Listing Information
---	-----------------------	----------------	------------------------	-------------------	-------------	---------------------------

2.3.5 Regen

For use as a regenerative front end for four quadrant operation.

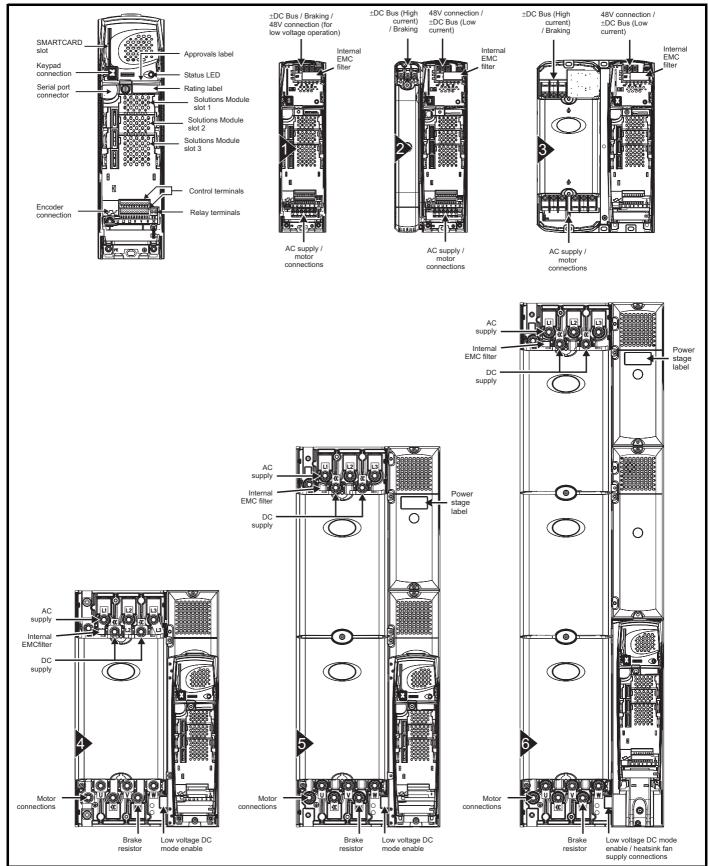
Regen operation allows bi-directional power flow to and from the AC supply. This provides far greater efficiency levels in applications which would otherwise dissipate large amounts of energy in the form of heat in a braking resistor.

The harmonic content of the input current is negligible due to the sinusoidal nature of the waveform when compared to a conventional bridge rectifier or thyristor front end.

See the *Unidrive SP Regen Installation Guide* for more information about operation in this mode.

2.4 Compatible encoders

Table 2-7 Encoders compatible with Unidrive SP


Encoder type	Pr 3.38 setting
Quadrature incremental encoders with or without marker pulse	Ab (0)
Quadrature incremental encoders with UVW commutation signals for absolute position for permanent magnet motors with or without marker pulse	Ab.SErvo (3)
Forward / reverse incremental encoders with or without marker pulse	Fr (2)
Forward / reverse incremental encoders with UVW commutation signals for absolute position for permanent magnet motors with or without marker pulse	Fr.SErvo (5)
Frequency and direction incremental encoders with or without marker pulse	Fd (1)
Frequency and direction incremental encoders with UVW commutation signals for absolute position for permanent magnet motors with or without marker pulse	Fd.SErvo (4)
Sincos incremental encoders	SC (6)
Heidenhain sincos encoders with Endat comms for absolute position	SC.EndAt (9)
Stegmann sincos encoders with Hiperface comms for absolute position	SC.HiPEr (7)
Sincos encoders with SSI comms for absolute position	SC.SSI (11)
SSI encoders (Gray code or binary)	SSI (10)
Endat comms only encoders	EndAt (8)
UVW commutation only encoders*	Ab.SErvo (3)

* This feedback device provides very low resolution feedback and should not be used for applications requiring a high level of performance

Safety Information Product Information Mechanical Installation Electrical Installation Getting Started Basic Parameters Running the motor Optimisation Smartcard operation Onboard PLC Advanced Technical Data Diagnostics UL Information
--

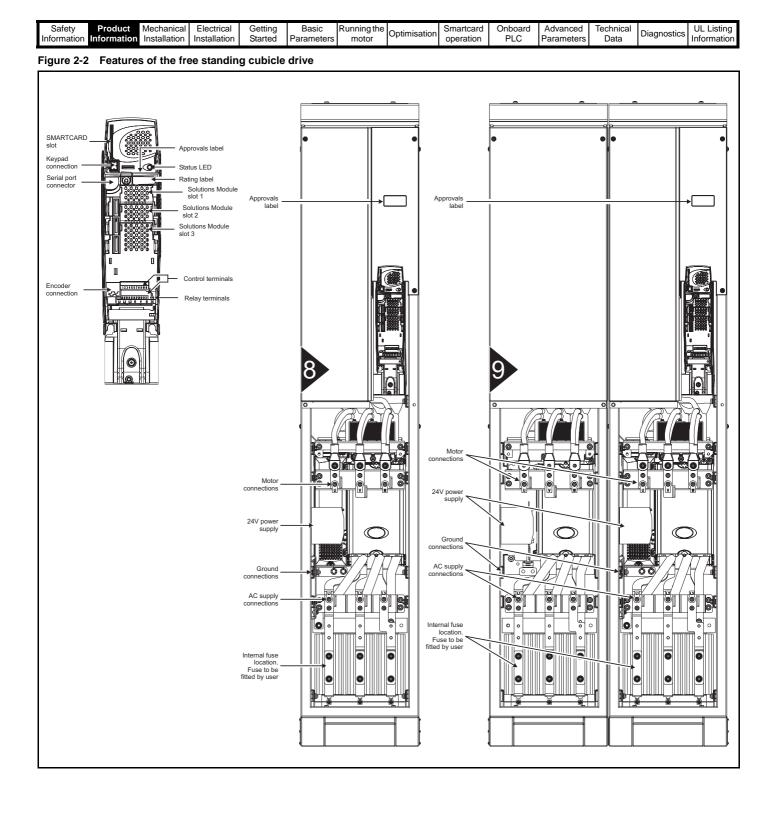
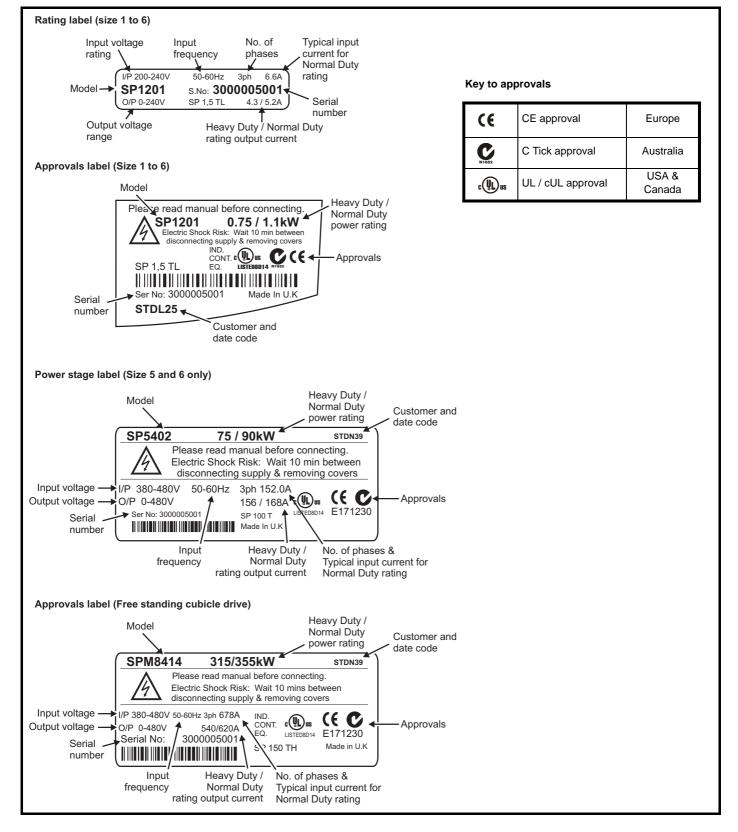

2.5 Drive features

Figure 2-1 Features of the wall mounted drive

NOTE

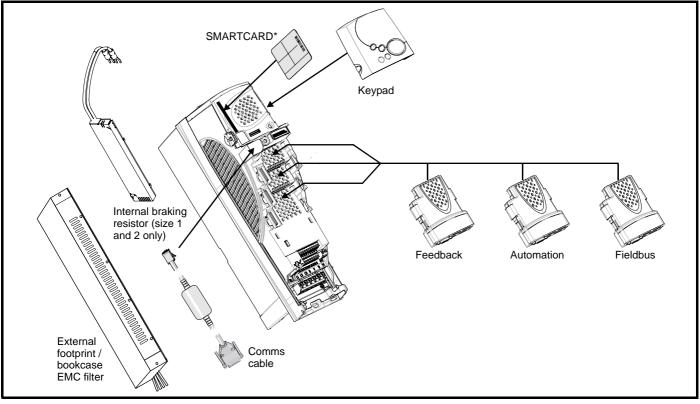
The Unidrive SP size 6 requires a 24V fan supply.



Safety Information Inf	Product formation	Mechanical Installation	Electrical Installation	Getting Started	Basic Parameters	Running the motor	Optimisation	Smartcard operation	Onboard PLC	Advanced Parameters	Technical Data	Diagnostics	UL Listing Information
---------------------------	-------------------	----------------------------	----------------------------	--------------------	---------------------	----------------------	--------------	---------------------	----------------	------------------------	-------------------	-------------	---------------------------

2.6 Nameplate description

See Figure 2-1 *Features of the wall mounted drive* for location of rating labels.


Figure 2-3 Typical drive rating labels

SafetyProductMechanicalElectricalGettingBasicRunning the motorOptimisationSmartcardOnboardAdvancedInformationInstallationInstallationStartedParametersmotorOptimisationPLCParameters	Technical Data	Diagnostics UL Listing Information
---	-------------------	---------------------------------------

2.7 Options

Figure 2-4 Options available with Unidrive SP

* A SMARTCARD is provided with the Unidrive SP as standard. For further information, refer to Chapter 9 *SMARTCARD operation* on page 151.

All Unidrive SP Solutions Modules are colour-coded in order to make identification easy. The following table shows the colour-code key and gives further details on their function.

Туре	Solutions Module	Colour	Name	Further Details
		Light Green	SM-Universal Encoder Plus	Universal Feedback interface Feedback interface for the following devices: Inputs Outputs • Incremental encoders • Quadrature • SinCos encoders • Frequency and direction • SSI encoders • SSI simulated outputs • EnDat encoders • SSI simulated outputs
Feedback		Light Blue	SM-Resolver	Resolver interface Feedback interface for resolvers. Simulated quadrature encoder outputs
		Brown	SM-Encoder Plus	Incremental encoder interface Feedback interface for incremental encoders without commutation signals. No simulated encoder outputs available
	A State of the sta	N/A	15-way D-type converter	Drive encoder input converter Provides screw terminal interface for encoder wiring and spade terminal for shield

Table 2-8 Solutions Module identification

Safety Product Mechanical Electrical Getting Basic Running the motor Optimisation	n Smartcard operation PLC Advanced Data Diagnostics UL Listing Information
--	--

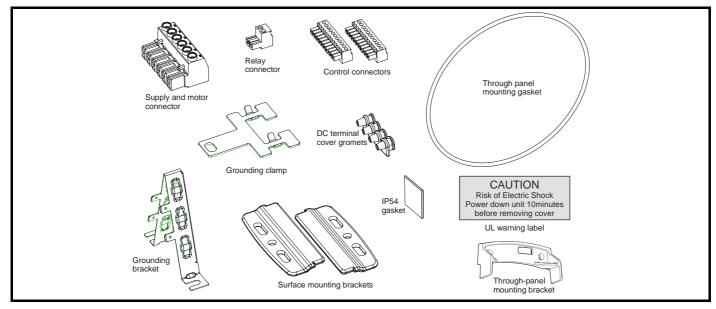
	olutions Module identificat	-		
Туре	Solutions Module	Colour	Name	Further Details
		Yellow	SM-I/O Plus	Extended I/O interface Increases the I/O capability by adding the following to the existing I/O in the drive: • Digital inputs x 3 • Analogue output (voltage) x 1 • Digital I/O x 3 • Relay x 2 • Analogue inputs (voltage) x 2
		Dark Green	SM-Applications	Applications Processor (with CTNet) 2 nd processor for running pre-defined and /or customer created application software with CTNet support
		White	SM-Applications Lite	Applications Processor 2 nd processor for running pre-defined and /or customer created application software
Automation		Dark Blue	SM-EZMotion	Motion Controller 1 ¹ / ₂ axis motion controller with processor for running customer created application specific software.
		Dark Yellow	SM-I/O Lite	Additional I/O 1 x Analogue input (± 10V bi-polar or current modes) 1 x Analogue output (0-10V or current modes) 3 x Digital input and 1 x Relay
		Dark Red	SM-I/O Timer	Additional I/O with real time clock As per SM-I/O Lite but with the addition of a Real Time Clock for scheduling drive running
		Turquoise	SM-PELV	Isolated I/O to NAMUR NE37 specifications For chemical industry applications 1 x Analogue input (current modes) 2 x Analogue outputs (current modes) 4 x Digital input / outputs, 1 x Digital input, 2 x Relay outputs
		Olive	SM-I/O 120V	Additional I/O conforming to IEC 1131-2 120Vac 6 digital inputs and 2 relay outputs rated for 120Vac operation
		Purple	SM-PROFIBUS-DP	Profibus option PROFIBUS DP adapter for communications with the Unidrive SP.
		Medium Grey	SM-DeviceNet	DeviceNet option Devicenet adapter for communications with the Unidrive SP
		Dark Grey	SM-INTERBUS	Interbus option Interbus adapter for communications with the Unidrive SP
Fieldbus		Pink	SM-CAN	CAN option CAN adapter for communications with the Unidrive SP
		Light Grey	SM-CANopen	CANopen option CANopen adapter for communications with the Unidrive SP
		Red	SM-SERCOS	SERCOS option Class B compliant. Torque velocity and position control modes supported with data rates (bit/sec): 2MB, 4MB, 8MB and 16MB. Minimum 250µsec network cycle time. Two digital high speed probe inputs 1µsec for position capture
		Beige	SM-Ethernet	Ethernet option 10 base-T / 100 base-T; Supports web pages, SMTP mail and multiple protocols: DHCP IP addressing; Standard RJ45 connection

Safety InformationProduct MechanicalMechanical Electrical InstallationElectrical StartedGetting StartedBasic ParametersRunning the motorOptimisationSmartcard operationOnboard PLCAdvanced ParametersTechnical DataDirection	Diagnostics UL Listing Information
--	---------------------------------------

Table 2-8 Solutions Module identification

Туре	Solutions Module	Colour	Name	Further Details
SLM		Orange	SM-SLM	 SLM interface The SM-SLM allows SLM feedback to be connected directly to the Unidrive SP drive and allows operation in either of the following modes: Encoder only mode Host mode

Table 2-9 Keypad identification


Туре	Keypad	Name	Further Details
Keypad	000	SM-Keypad	LED keypad option Keypad with a LED display
Ксурай	800	SM-Keypad Plus	LCD keypad option Keypad with an alpha-numeric LCD display with Help function

2.8 Items supplied with the drive

The drive is supplied with a copy of the multilingual *Unidrive SP Short Form Guide* (size 1 to 3) or *Unidrive SP User Guide* (size 4 and above), a SMARTCARD, the safety booklet, the certificate of quality, an accessory kit box including the items shown in Figure 2-5, Figure 2-6, Figure 2-7 or Figure 2-8, and a CD ROM containing the following user guides:

- Unidrive SP User Guide (English, French, German, Italian, Spanish)
- Unidrive SP Advanced User Guide
- Solutions Module User Guides

Figure 2-5 Accessories supplied with size 1

Information Installation Installation Started Parameters motor Optimisation operation PLC Parameters Data Diagnostics Information	Information Installation Installation Started Parameters motor operation PLC	Advanced Parameters	s Data	Diagnostics	UL Listing Information
---	--	------------------------	--------	-------------	---------------------------

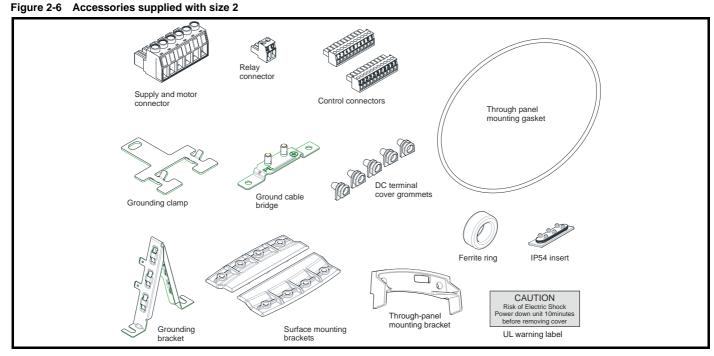
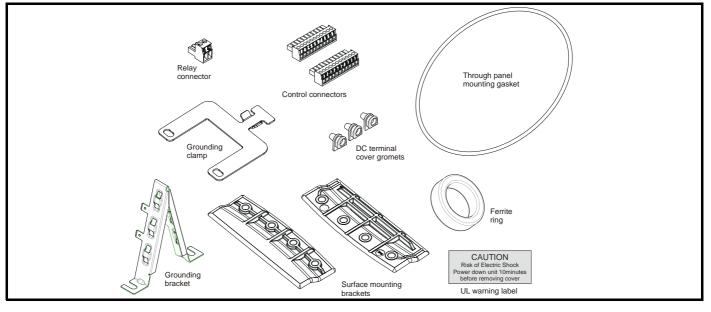
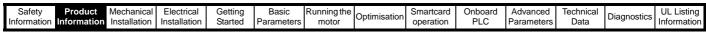
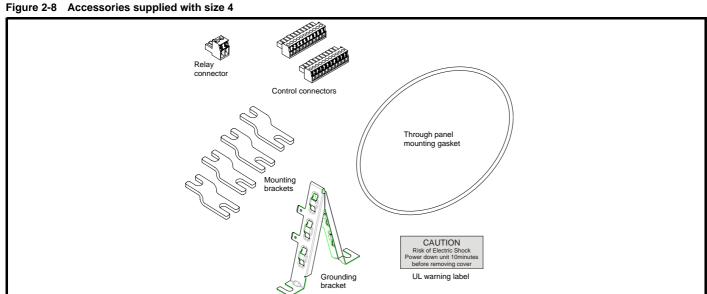





Figure 2-7 Accessories supplied with size 3

Figure 2-9 Accessories supplied with size 5

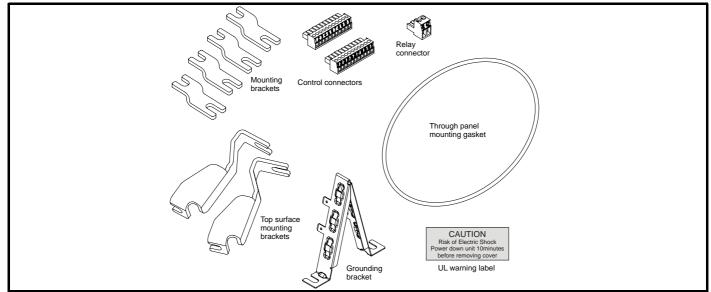
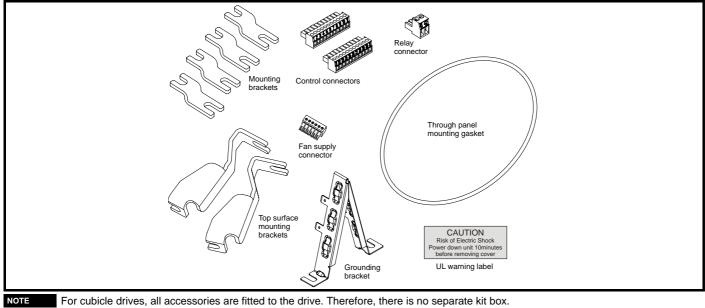



Figure 2-10 Accessories supplied with size 6

Safety Product Mechanical Information Electrical Installation Getting Started Basic Running the motor Optimisation Smartcard operation	Onboard PLC	Advanced Parameters	Technical Data	Diagnostics	UL Listing Information
---	----------------	------------------------	-------------------	-------------	---------------------------

3 Mechanical Installation

This chapter describes how to use all mechanical details to install the drive. The drive is intended to be installed in an enclosure. Key features of this chapter include:

- Through-hole mounting
- IP54 as standard
- Enclosure sizing and layout
- Solutions Module fitting
- Terminal location and torque settings

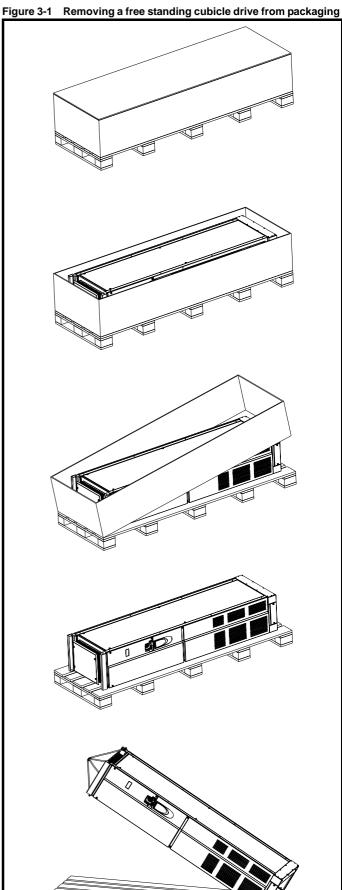
3.1 Safety information

Follow the instructions The mechanical and el

The mechanical and electrical installation instructions must be adhered to. Any questions or doubt should be referred to the supplier of the equipment. It is the responsibility of the owner or user to ensure that the installation of the drive and any external option unit, and the way in which they are operated and maintained, comply with the requirements of the Health and Safety at Work Act in the United Kingdom or applicable legislation and regulations and codes of practice in the country in which the equipment is used.

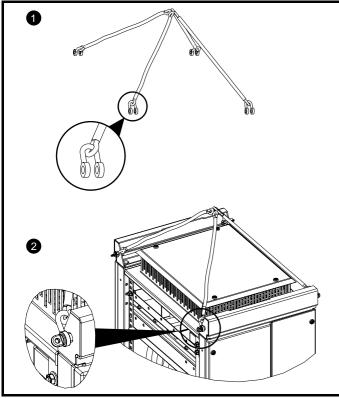
Competence of the installer

The drive must be installed by professional assemblers who are familiar with the requirements for safety and EMC. The assembler is responsible for ensuring that the end product or system complies with all the relevant laws in the country where it is to be used.


WARNING

The weights of the size 4, 5 and 6 drives are as follows: Size 4: 30 kg (66 lb) Size 5: 55 kg (121 lb) Size 6: 75 kg (165 lb) Use appropriate safeguards when lifting these models

The weights of the size 8 and 9 free standing drives are as follows:


Size 8: 266 kg (586 lb) Size 9: 532 kg (1173 lb)

Lift the drive by the method detailed in Figure 3-2 on page 26. Do not tilt the drive. The centre of gravity of the unit is high. An overturning unit can cause physical injury.

Safety Information	Product Information	Mechanical Installation	Electrical Installation	Getting Started	Basic Parameters	Running the motor	Optimisation	Smartcard operation	Onboard PLC	Advanced Parameters	Technical Data	Diagnostics	UL Listing Information

Figure 3-2 Lifting the free standing cubicle drive

1. Attach "D" shackles to each rope

2. Attach each shackle to the lifting plate. Ensure angle of each rope is ${>}45^{\circ}.$

3.2 Planning the installation

The following considerations must be made when planning the installation:

3.2.1 Access

Access must be restricted to authorised personnel only. Safety regulations which apply at the place of use must be complied with.

The IP (Ingress Protection) rating of the drive is installation dependent. For further information, please refer to section 3.11 *IP Rating (Ingress Protection)* on page 53.

3.2.2 Environmental protection

The drive must be protected from:

- moisture, including dripping water or spraying water and condensation. An anti-condensation heater may be required, which must be switched off when the drive is running.
- contamination with electrically conductive material
- contamination with any form of dust which may restrict the fan, or impair airflow over various components
- temperature beyond the specified operating and storage ranges
- corrosive gasses

3.2.3 Cooling

The heat produced by the drive must be removed without its specified operating temperature being exceeded. Note that a sealed enclosure gives much reduced cooling compared with a ventilated one, and may need to be larger and/or use internal air circulating fans.

For further information, please refer to section 3.8.2 *Enclosure sizing* on page 51.

3.2.4 Electrical safety

The installation must be safe under normal and fault conditions. Electrical installation instructions are given in Chapter 4 *Electrical Installation on page 66*.

3.2.5 Fire protection

The drive enclosure is not classified as a fire enclosure. A separate fire enclosure must be provided.

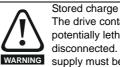
3.2.6 Electromagnetic compatibility

Variable speed drives are powerful electronic circuits which can cause electromagnetic interference if not installed correctly with careful attention to the layout of the wiring.

Some simple routine precautions can prevent disturbance to typical industrial control equipment.

If it is necessary to meet strict emission limits, or if it is known that electromagnetically sensitive equipment is located nearby, then full precautions must be observed. In-built into the drive, is an internal EMC filter, which reduces emissions under certain conditions. If these conditions are exceeded, then the use of an external EMC filter may be required at the drive inputs, which must be located very close to the drives. Space must be made available for the filters and allowance made for carefully segregated wiring. Both levels of precautions are covered in section 4.11 *EMC (Electromagnetic compatibility) on page 82*.

3.2.7 Hazardous areas


The drive must not be located in a classified hazardous area unless it is installed in an approved enclosure and the installation is certified.

3.3 Terminal cover removal

Isolation device

The AC supply must be disconnected from the drive using an approved isolation device before any cover is removed from the drive or before any servicing work is performed.

The drive contains capacitors that remain charged to a potentially lethal voltage after the AC supply has been disconnected. If the drive has been energised, the AC supply must be isolated at least ten minutes before work may continue.

Normally, the capacitors are discharged by an internal resistor. Under certain, unusual fault conditions, it is possible that the capacitors may fail to discharge, or be prevented from being discharged by a voltage applied to the output terminals. If the drive has failed in a manner that causes the display to go blank immediately, it is possible the capacitors will not be discharged. In this case, consult Control Techniques or their authorised distributor.

3.3.1 Removing the terminal covers


Unidrive SP size 1 is fitted with two terminal covers: Control and DC terminal covers.

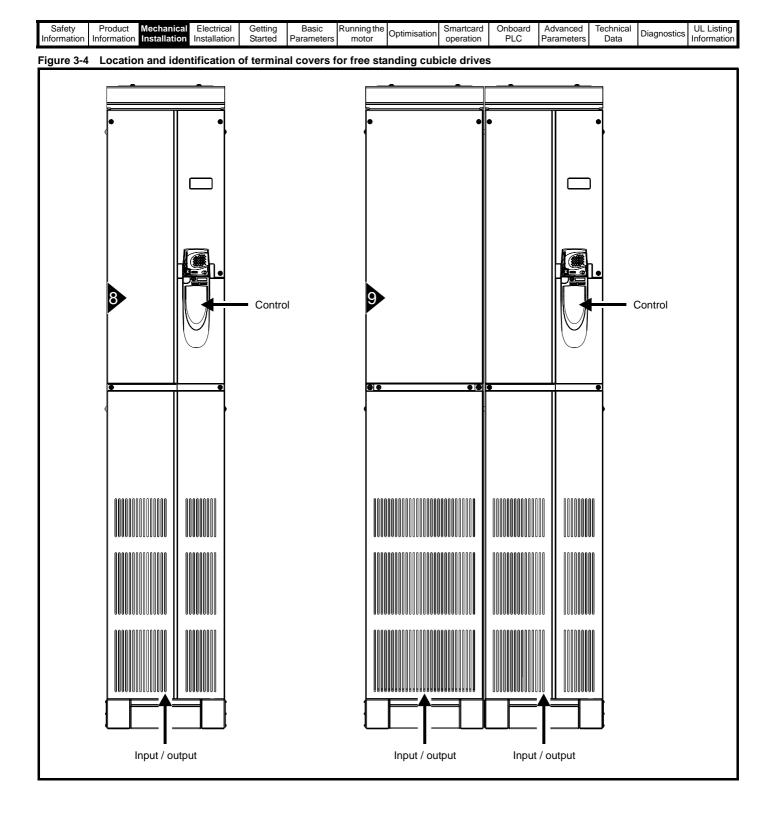
Unidrive SP size 2 is fitted with three terminal covers: Control, High current DC / Braking and low voltage DC terminal covers.

Unidrive SP size 3 is fitted with four terminal covers: Control, High current DC / Braking, low voltage DC and AC terminal covers.

Unidrive SP size 4, 5 and 6 are fitted with three terminal covers: Control, input and output terminal covers.

When the drive is through-panel mounted the control, and AC for size 3, terminal cover must be removed in order to provide access to the mounting holes. Once the drive has been mounted, the terminal cover can be replaced.

Output


Control

Output

Control

Output

Control

Safety InformationProduct InstallationMechanical Electrical InstallationGetting StartedBasic ParametersRunning the motorOptimisationSmartcard operationOnboard PLCAdvance Parameter	 Diagnostics 	Smartcard operation	Optimisation	5	_	5				
---	---------------------------------	---------------------	--------------	---	---	---	--	--	--	--

To remove a terminal cover, undo the screw and lift the terminal cover off as shown. The control terminal cover must be removed first before the DC (size 1) / low voltage DC (sizes 2 and 3) terminal cover can be removed.

When replacing the terminal covers the screws should be tightened with a maximum torque of 1 N m (0.7 lb ft).

Figure 3-5 Removing the size 1 terminal covers

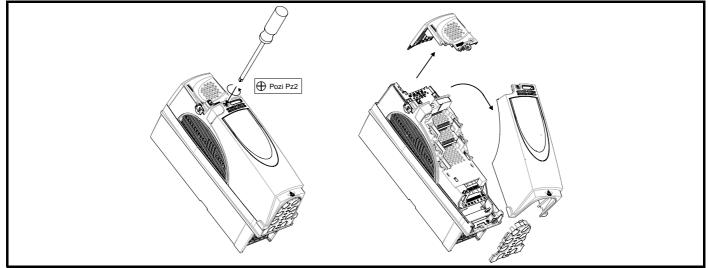


Figure 3-6 Removing the size 2 terminal covers

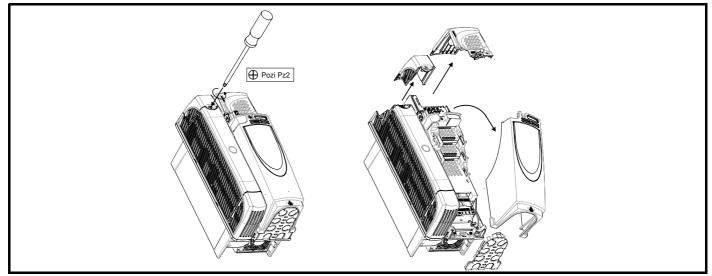
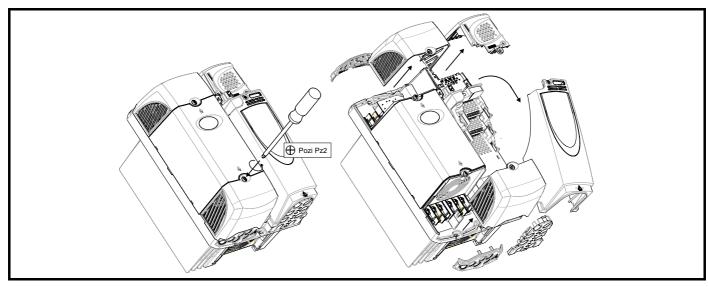
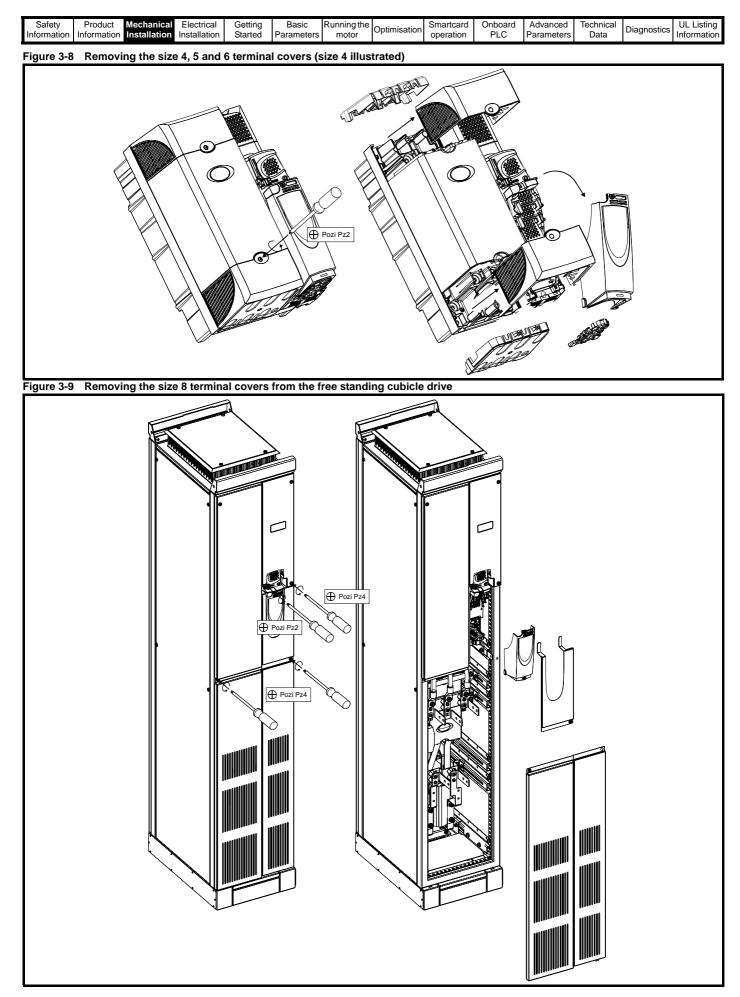
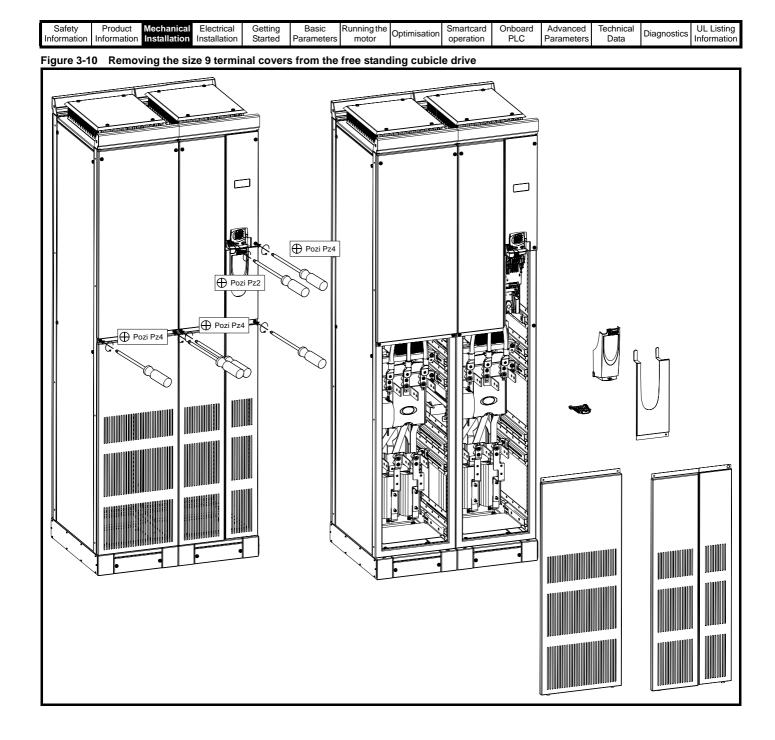





Figure 3-7 Removing the size 3 terminal covers

Safety	Product	Mechanical	Electrical	Getting	Basic	Running the	Optimisation	Smartcard	Onboard	Advanced	Technical	Diagnostics	UL Listing
Informatio	n Information	Installation	Installation	Started	Parameters	motor	Optimisation	operation	PLC	Parameters	Data	Diagnostics	Information

3.4 Baying free standing cubicles

This section describes how to connect or 'bay' the various free standing cubicles together.

3.4.1 Preparation for baying

The following diagrams show how to prepare the incomer shell/applications cubicle, the size 8 and size 9 free standing cubicle drives for baying.

Remove all front and side panels as shown. All screws for these are Pozi Pz4
 All ground cable connections are to be removed with an M8 Torx head (T40)

Figure 3-11 Preparation for baying the incomer / applications cubicle Figure 3-12 Preparation for baying the size 8 free standing drive

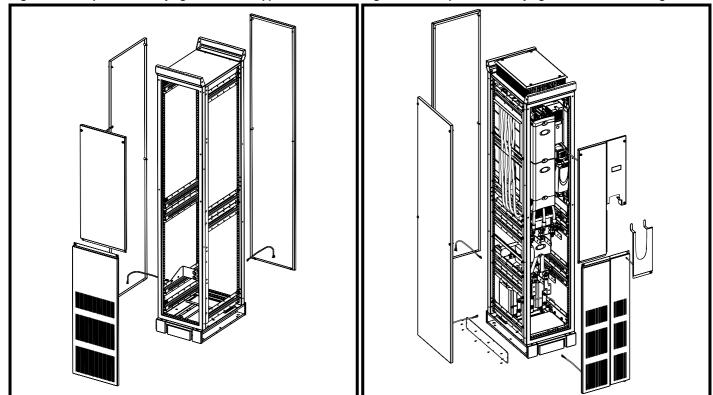
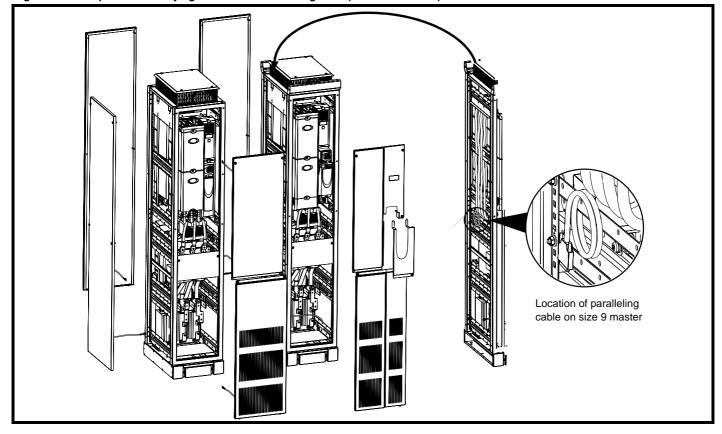
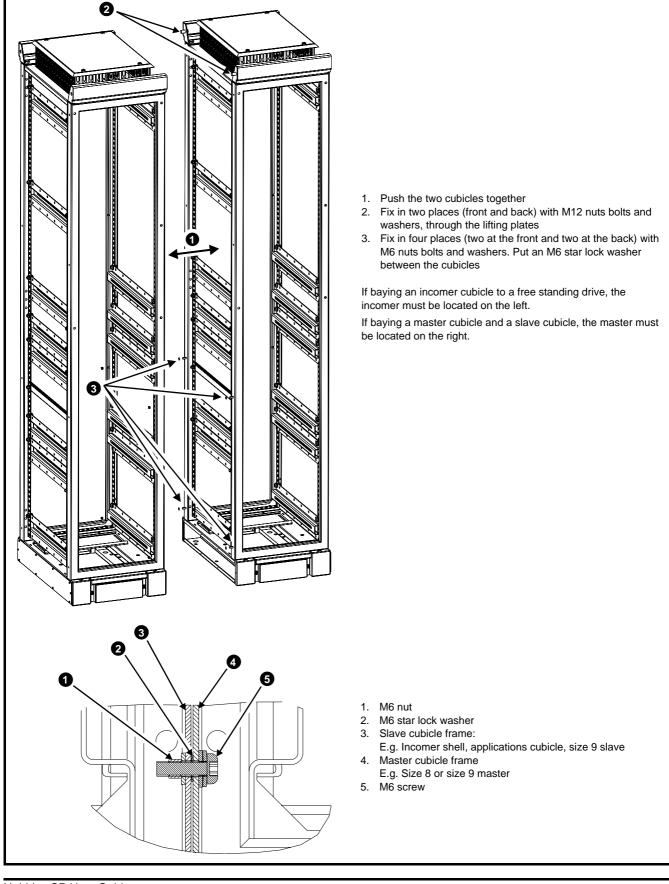



Figure 3-13 Preparation for baying the size 9 free standing drive (slave and master)

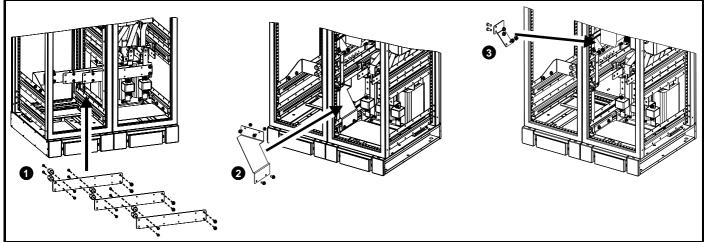


Safety Information	Product Information	Mechanical Installation	Electrical Installation	Getting Started	Basic Parameters	Running the motor	Optimisation	Smartcard operation	Onboard PLC	Advanced Parameters	Technical Data	Diagnostics	UL Listing Information
-----------------------	------------------------	----------------------------	----------------------------	--------------------	---------------------	-------------------	--------------	---------------------	----------------	------------------------	-------------------	-------------	---------------------------

3.4.2 Baying of cubicles

The following generic drawing demonstrates how to bay any type of cubicle together.

Figure 3-14 Baying of cubicles

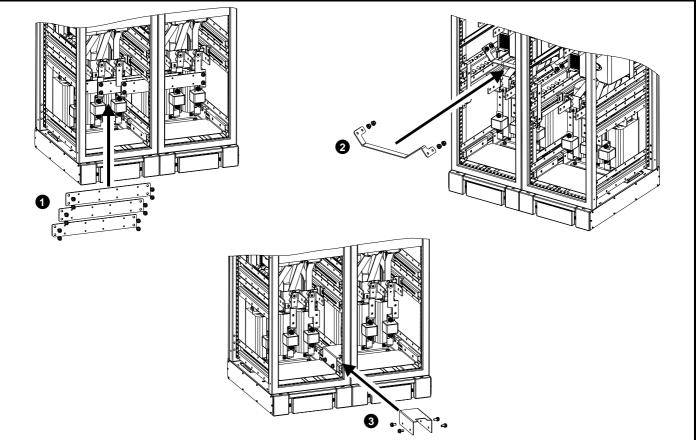


Safety Information	Product Information	Mechanical Installation	 Getting Started	Basic Parameters	Running the motor	Optimisation	Smartcard operation	Onboard PLC	Advanced Parameters	Technical Data	Diagnostics	UL Listing Information

3.4.3 Variant dependant connections

The following diagrams look at specific features of baying. All images show the appropriate components exploded and fitted.

Figure 3-15 Baying the incomer shell / applications cubicle to a free standing cubicle drive

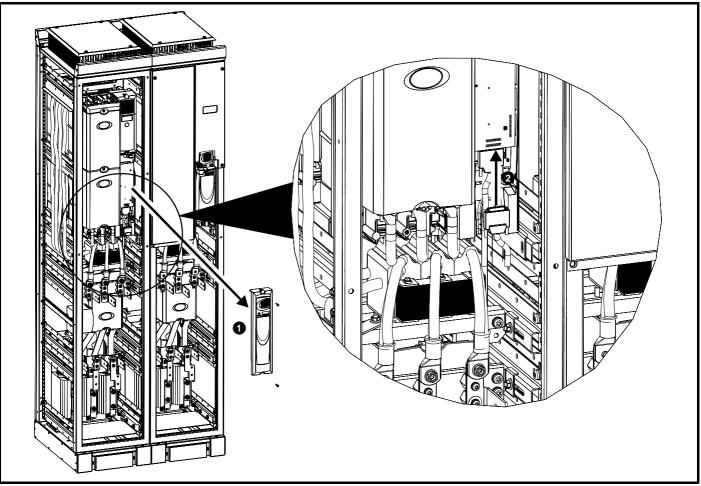


1. Fit paralleling busbars from incomer to the free standing cubicle drive input terminals and fix with M8 screws (17 N m, 12.5 lb.ft)

2. Fit EMC bracket when EMC filter required

3. Fit ground clamp

Figure 3-16 Baying the size 9 master and slave


1. Fit paralleling busbars from the slave to the master free standing cubicle drive input terminals and fix with M8 screws (17 N m, 12.5 lb.ft) if used on common supply source

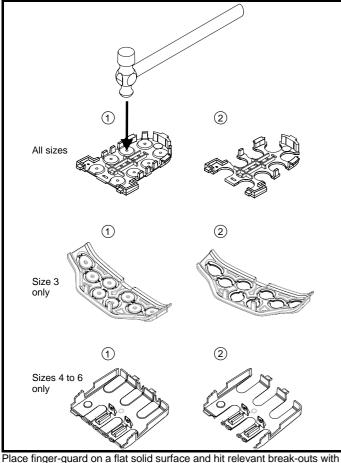
2. Fit ground clamp

3. Fit EMC bracket

Safety Product Mechanical Information Electrical Installation Getting Started Basic Running the motor Optimisation	Smartcard operation	Onboard PLC	Advanced Parameters	Technical Data	Diagnostics	UL Listing Information
--	------------------------	----------------	------------------------	-------------------	-------------	---------------------------

1. Remove size 9 slave interface cover

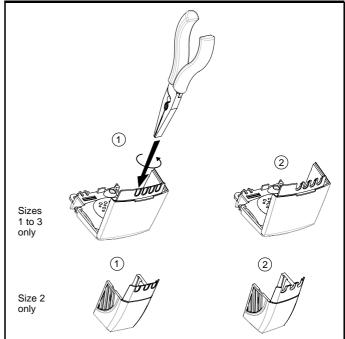
2. Connect the paralleling cable to the size 9 slave input slot


3. Replace size 9 slave interface cover

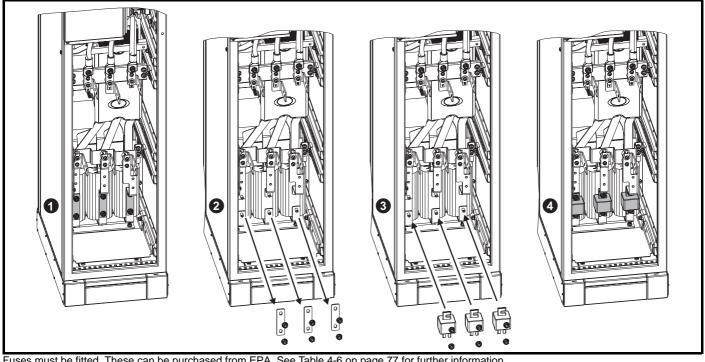
4. Replace all size 9 cubicle panels

Optimisation	Diagnostics	
--------------	-------------	--

3.4.4 Removing the finger-guard and DC terminal cover break-outs


Figure 3-18 Removing the finger-guard break-outs

hammer as shown (1). Continue until all required break-outs are removed (2). Remove any flash / sharp edges once the break-outs are removed.

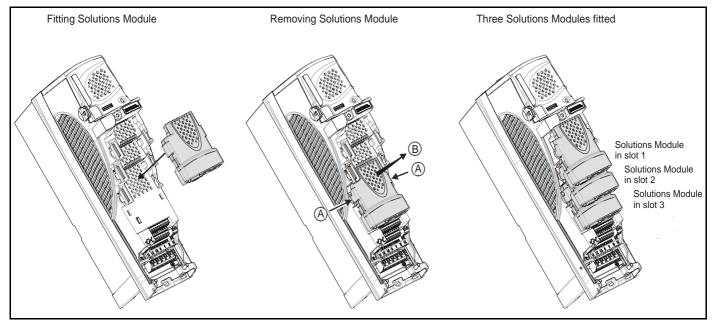

Figure 3-20 Fitting fuses to the size 8 and 9 free standing cubicle drives

Grasp the DC terminal cover break-outs with pliers as shown (1) and twist to remove. Continue until all required break-outs are removed (2).

Remove any flash / sharp edges once the break-outs are removed. Use the DC terminal cover grommets supplied in the accessory box (Figure 2-5 and Figure 2-6 on page 23, and Figure 2-7 and Figure 2-8 on page 24) to maintain the seal at the top of the drive.

Fuses must be fitted. These can be purchased from EPA. See Table 4-6 on page 77 for further information. The nuts holding the fuses must be tightened to a torque of 12N m (8.8lb.ft)

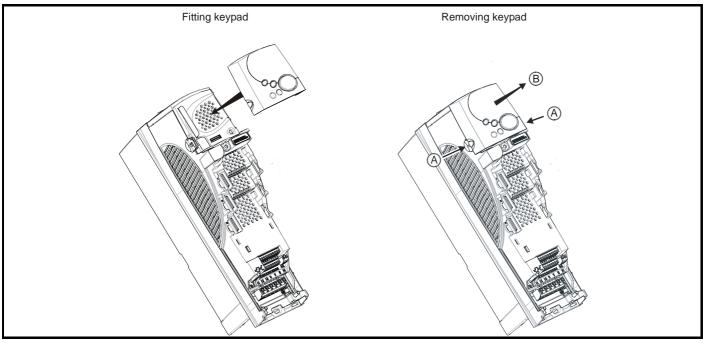
Safety Product Mechanical Electrical Information Information Installation Installation	Getting Basic Started Parameters	Running the motor Optimisation	Smartcard Onboard operation PLC	Advanced Technical Parameters Data	Diagnostics UL Listing Information
Ensure fuses are aligned with th					
Figure 3-21 Removing the cable gland	plate from the size	8 and 9 free standing	g cubicle drive for "	glanding off" the ca	able


Safety	Product	Mechanical	Electrical	Getting	Basic	Running the	Optimisation	Smartcard	Onboard	Advanced	Technical	Diagnostics	UL Listing
Information	Information	Installation	Installation	Started	Parameters	motor	Optimisation	operation	PLC	Parameters	Data	Diagnostics	Information

3.5 Solutions Module fitting / removal

Power down the drive before fitting / removing the Solutions Module. Failure to do so may result in damage to the product.

Figure 3-22 Fitting and removal of a Solutions Module


To fit the Solutions Module, press down in the direction shown above until it clicks into place.

To remove the Solutions Module, press inwards at the points shown (A) and pull in the direction shown (B).

The drive has the facility for all three Solutions Module slots to be used at the same time, as illustrated.

NOTE

It is recommended that the Solutions Module slots are used in the following order: slot 3, slot 2 and slot 1.

To fit, align the keypad and press gently in the direction shown until it clicks into position.

To remove, whilst pressing the tabs inwards (A), gently lift the keypad in the direction indicated (B).

NOTE

The keypad can be fitted / removed whilst the drive is powered up and running a motor, providing that the drive is not operating in keypad mode.

Figure 3-23 Fitting and removal of a keypad

SafetyProductMechanical InformationElectrical InstallationGetting StartedBasic ParametersRunning the motorOptimisationSmartcard operationOnboard PLCAdvanced ParametersTechnical Data	UL Listing Information
--	---------------------------

3.6 Mounting methods

Unidrive SP can be either surface or through-panel mounted using the appropriate brackets.

The following drawings show the dimensions of the drive and mounting holes for each method to allow a back plate to be prepared.

If the drive has been used at high load levels for a period of time, the heatsink can reach temperatures in excess of 70°C (158°F). Human contact with the heatsink should be prevented.

The weights of the size 4, 5 and 6 drives are as follows: Size 4: 30 kg (66 lb) Size 5: 55 kg (121 lb) Size 6: 75 kg (165 lb) Use appropriate safeguards when lifting these models The weights of the size 8 and 9 free standing drives are as follows: Size 8: 266 kg (586 lb)

Size 8: 266 kg (586 lb) Size 9: 532 kg (1173 lb) Lift the drive by the method detailed in Figure 3-2 on page 26.

Do not tilt the drive. The centre of gravity of the unit is high. An overturning unit can cause physical injury.

3.6.1 Surface mounting

Figure 3-24 Surface mounting the size 1 drive

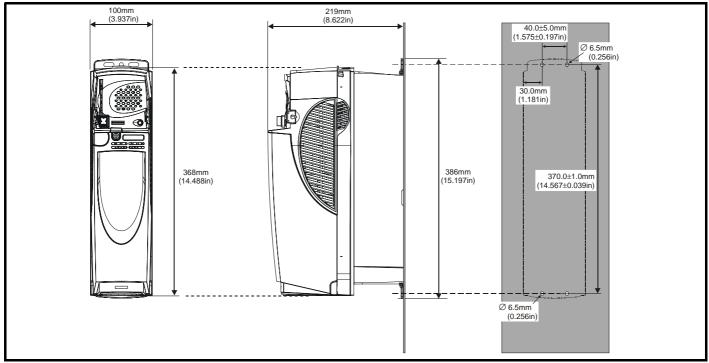
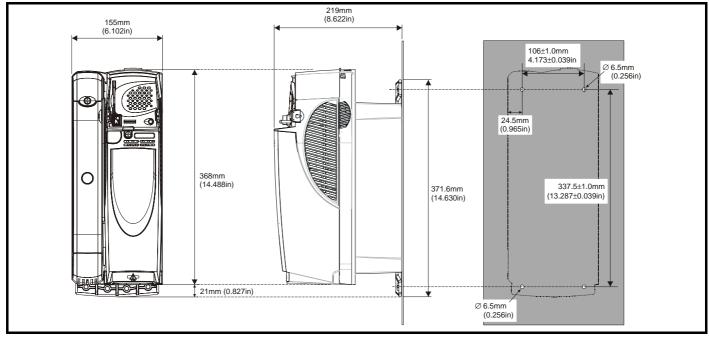
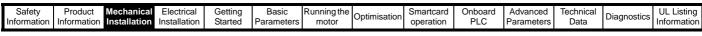
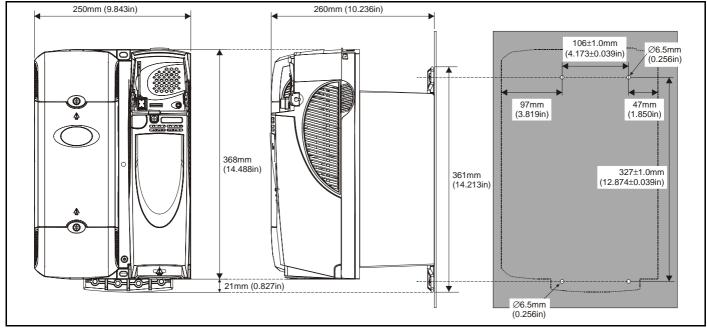
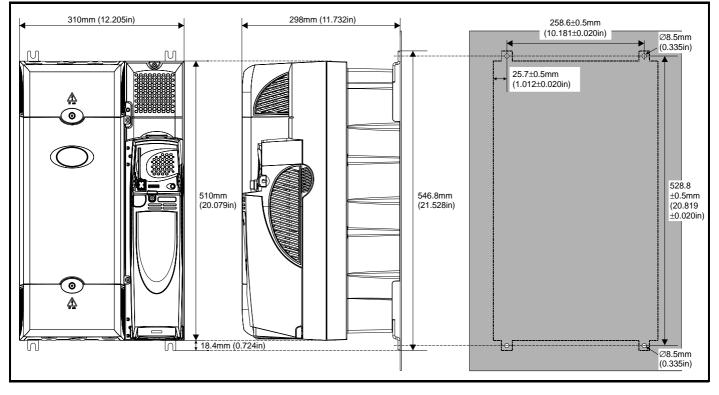
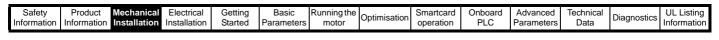
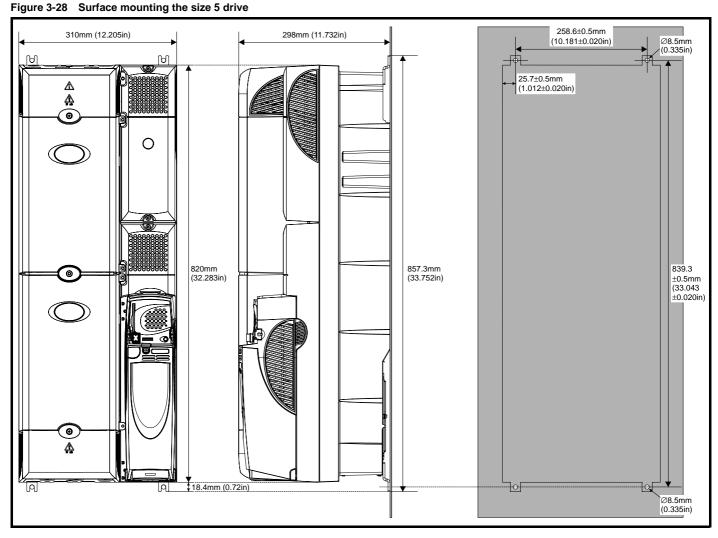
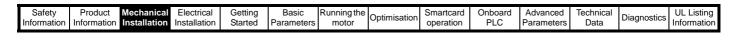
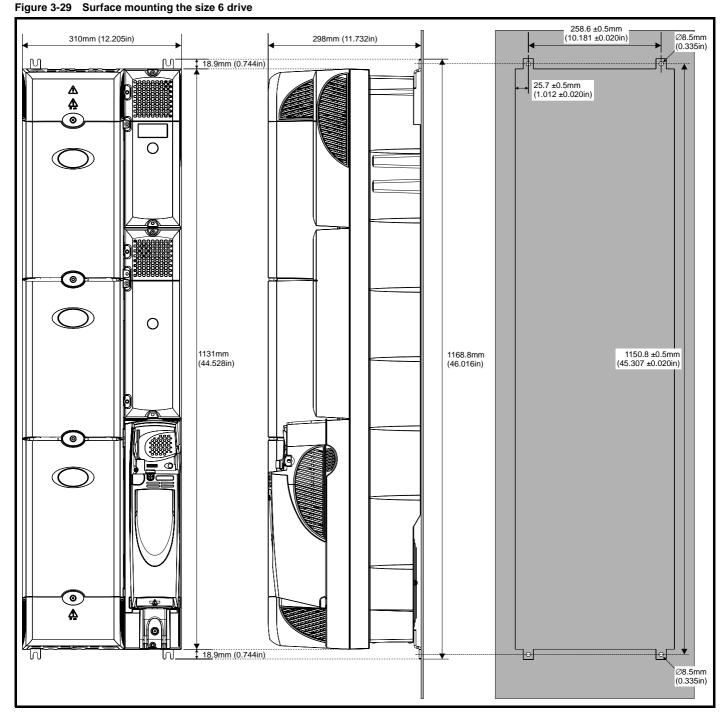




Figure 3-25 Surface mounting the size 2 drive


Figure 3-27 Surface mounting the size 4 drive

Safety Information		Mechanical Installation	Electrical Installation	Getting Started	Basic Parameters	Running the motor	Optimisation	Smartcard operation	Onboard PLC	Advanced Parameters	Technical Data	Diagnostics	UL Listing Information
-----------------------	--	----------------------------	----------------------------	--------------------	---------------------	----------------------	--------------	---------------------	----------------	------------------------	-------------------	-------------	---------------------------

3.6.2 Through-panel mounting

When the drive is through-panel mounted, the main terminal cover(s) must be removed in order to provide access to the mounting holes. Once the drive has been mounted, the terminal cover(s) can be replaced.

Figure 3-30 Through-panel mounting the size 1 drive

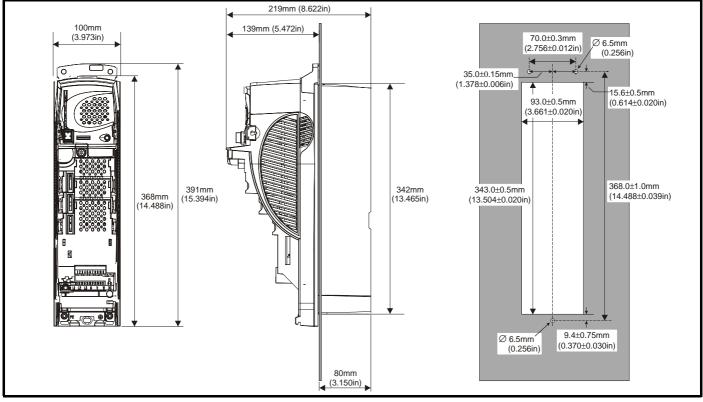
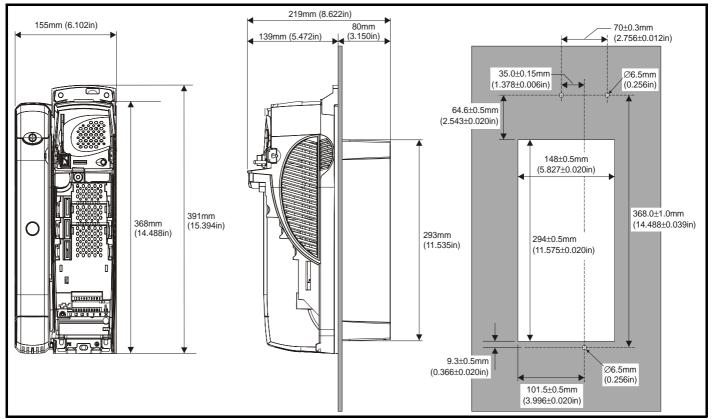
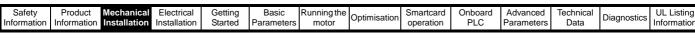
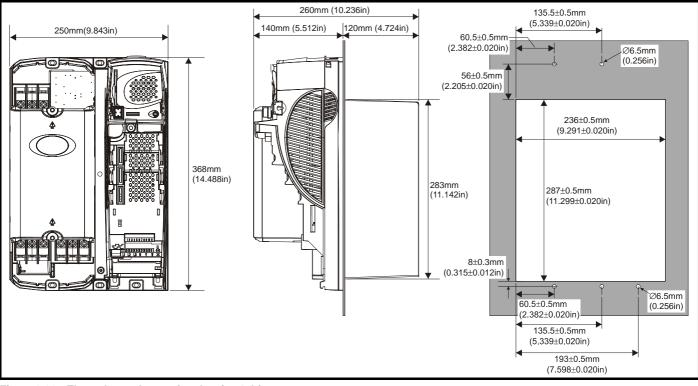
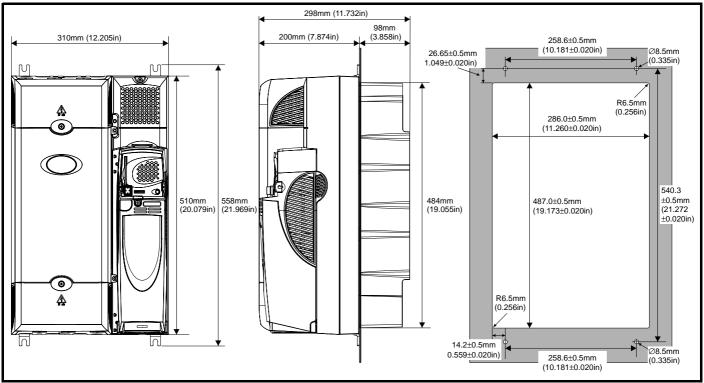
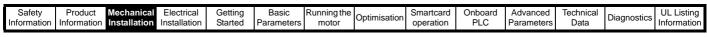
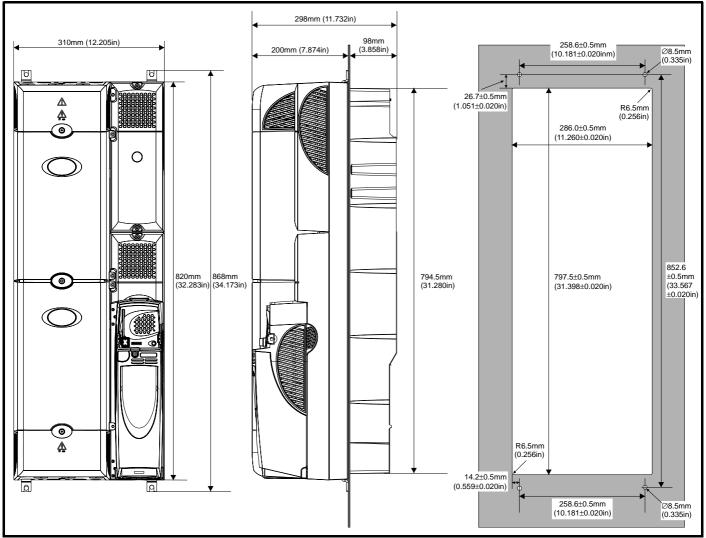




Figure 3-31 Through-panel mounting the size 2 drive

Figure 3-32 Through-panel mounting the size 3 drive


Figure 3-33 Through-panel mounting the size 4 drive

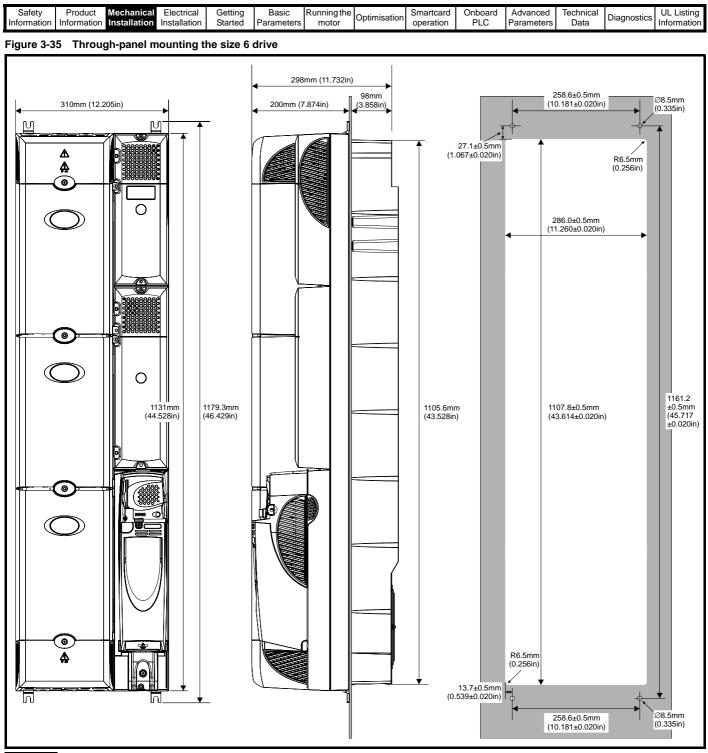
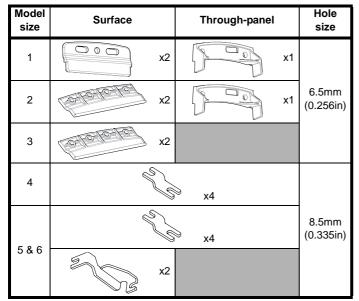

When a Unidrive SP size 4 or 5 is through-panel mounted, the grounding link bracket must be folded upwards. This is required to provide a grounding point for the grounding bracket. See section 4.11.1 *Grounding hardware* on page 83 for more information.

Figure 3-34 Through-panel mounting the size 5 drive

When a Unidrive SP size 4 or 5 is through-panel mounted, the grounding link bracket must be folded upwards. This is required to provide a grounding point for the grounding bracket. See section 4.11.1 *Grounding hardware* on page 83 for more information.

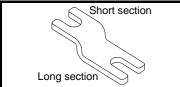


NOTE

In order to achieve IP54 rating (NEMA 12) for through-panel mounting, an IP54 insert must be fitted (size 1 and 2) and the heatsink fan should be replaced with an IP54 rated fan (sizes 1 to 4). Additionally, the gasket provided should be fitted between the drive and the backplate to ensure a good seal for the cubicle. If the heatsink mounted braking resistor is to be used with the drive through-panel mounted, refer to section 3.13 *Heatsink mounted braking resistor* on page 60 prior to mounting the drive. For further information refer to section 3.11 *IP Rating (Ingress Protection)* on page 53.

Safety	Draduat	Machanical	Electrical	Cotting	Pagia	Running the		Smortoord	Ophoord	Advanced	Technical	I	LII Lipting
Information		Mechanical	Electrical	Getting	_	5	Optimisation	Smartcard	Onboard	Advanced	Technical	Diagnostics	UL Listing
mormation	Information	Installation	Installation	Started	Parameters	motor		operation	PLC	Parameters	Data	-	Information

Table 3-1 Mounting brackets



3.6.3 Fitting of the Unidrive SP mounting bracket on size 4, 5 and 6

Size 4, 5 and 6 of the Unidrive SP range use the same mounting brackets for surface and through-panel mounting.

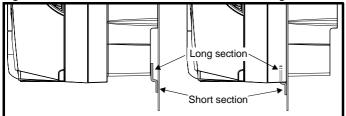
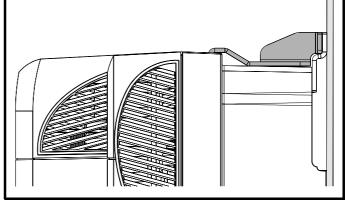

The mounting bracket has a long section and a short section.

Figure 3-36 Size 4, 5 and 6 mounting bracket

The mounting bracket must be fitted in the correct orientation with the long section inserted into or attached to the drive and the short section is attached to the back plate. Figure 3-37 shows the orientation of the mounting bracket when the drive is surface and through-panel mounted.


Figure 3-37 Orientation of the size 4, 5 and 6 mounting bracket

Unidrive SP size 6 also requires two top mounting brackets when the drive is surface mounted. The two brackets should be fitted to the top of the drive as shown in Figure 3-38.

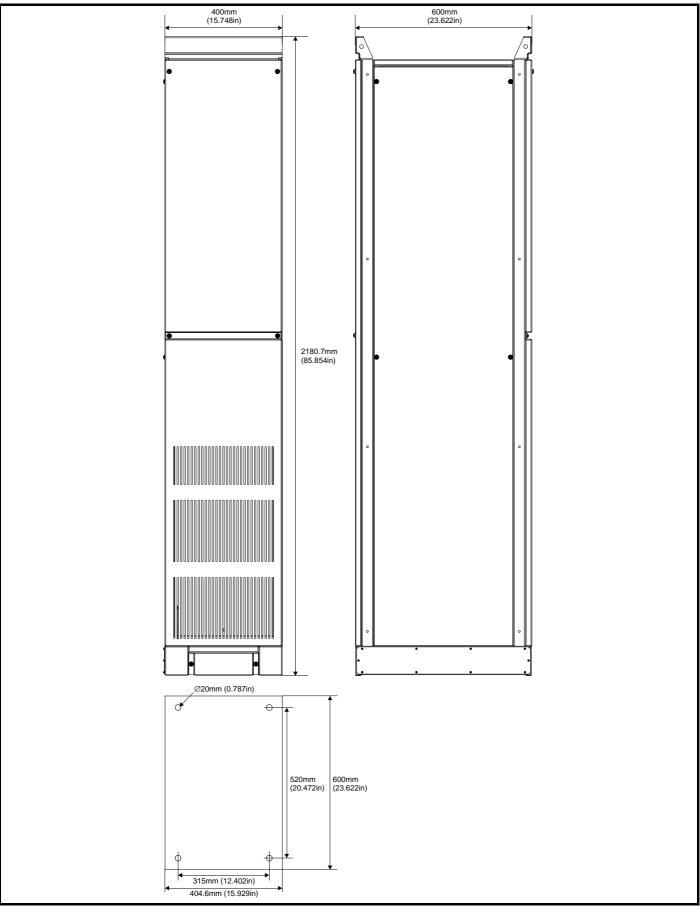
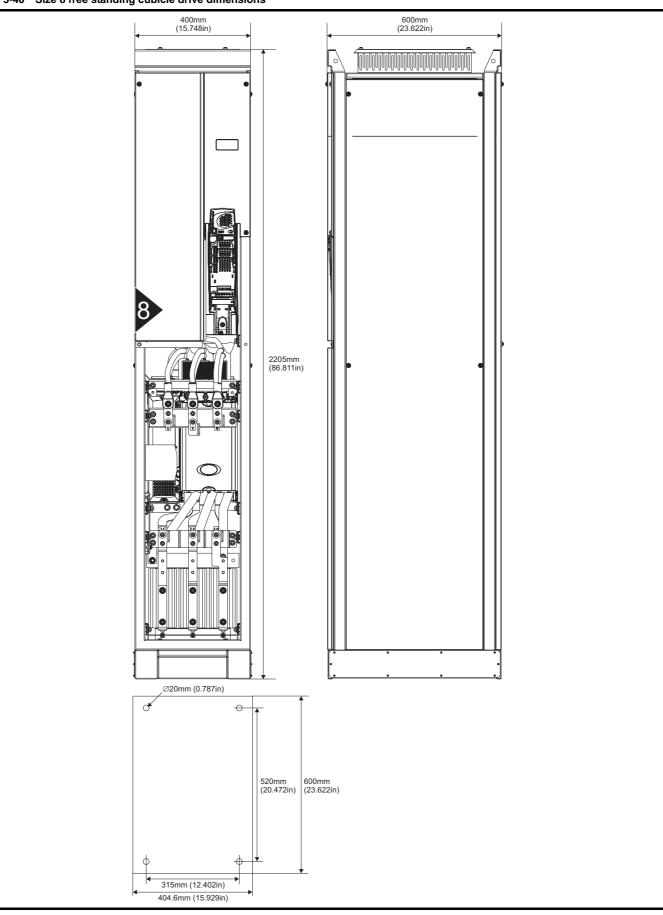
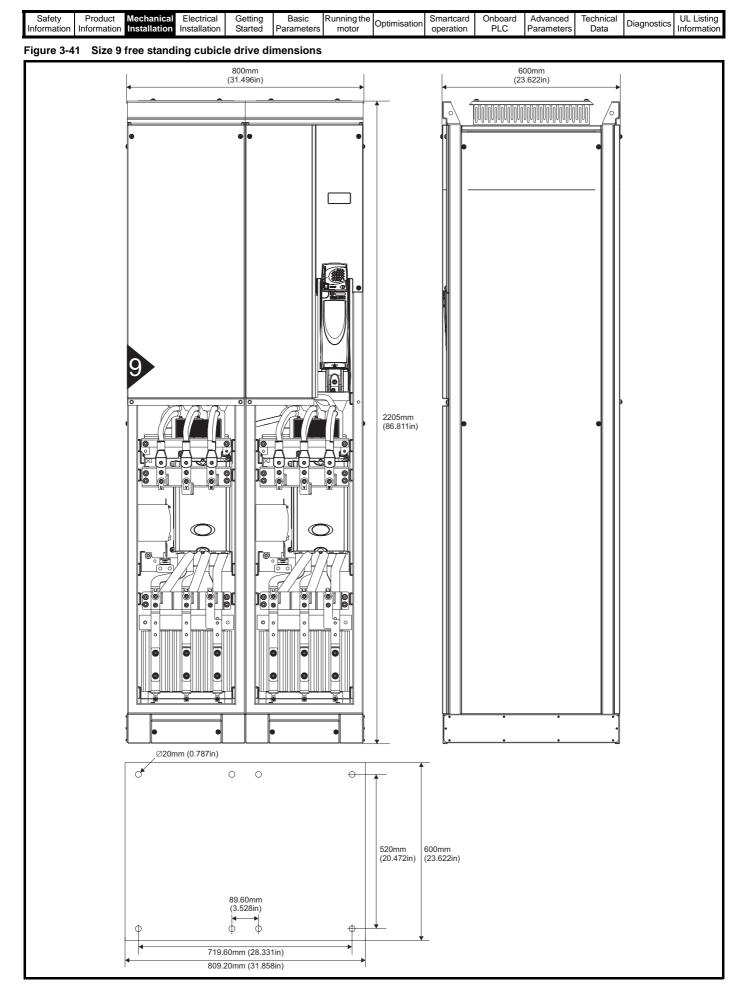

The maximum torque setting for the screws into the drive chassis is 10 N m (7.4 lb. ft).

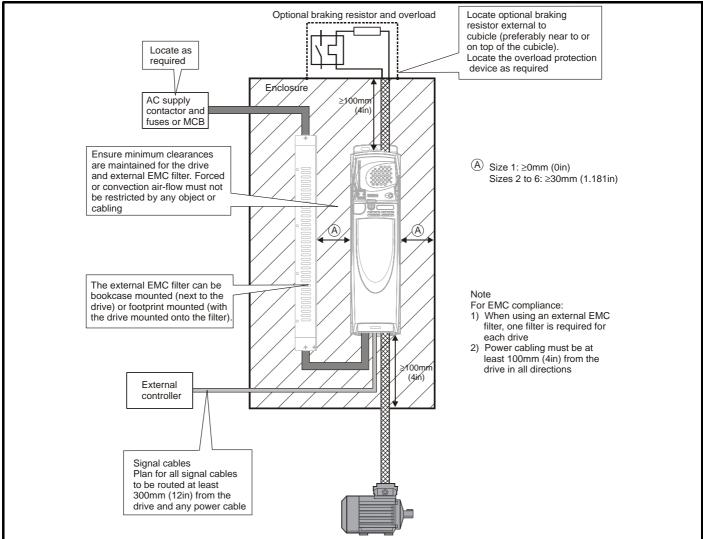
Figure 3-38 Location of top surface mounting brackets for size 5 and 6


Safety	Product	Mechanical	Electrical	Getting	Basic	Running the	Optimisation	Smartcard	Onboard	Advanced	Technical	Diagnostics	UL Listing
Informati	on Information	Installation	Installation	Started	Parameters	motor	Optimisation	operation	PLC	Parameters	Data	Diagnostics	Information


3.7 Free standing cubicle drive dimensions Figure 3-39 Incomer shell / applications cubicle dimensions

Safety InformationProductMechanical InstallationElectrical InstallationGetting StartedBasic ParametersRunning the motorOptimisationSmartcard operationOnboard PLCAdvanced Parameters	Technical Data	Diagnostics	UL Listing Information
---	-------------------	-------------	---------------------------

Figure 3-40 Size 8 free standing cubicle drive dimensions


Safety Information	Product Information	Mechanical Installation	Electrical Installation	Getting Started	Basic Parameters	Running the motor	Optimisation	Smartcard operation	Onboard PLC	Advanced Parameters	Technical Data	Diagnostics	UL Listing Information
-----------------------	------------------------	----------------------------	----------------------------	--------------------	---------------------	----------------------	--------------	---------------------	----------------	------------------------	-------------------	-------------	---------------------------

3.8 Enclosure

3.8.1 Enclosure layout

Please observe the clearances in the diagram below taking into account any appropriate notes for other devices / auxiliary equipment when planning the installation.

Figure 3-42 Enclosure layout

3.8.2 Enclosure sizing

- 1. Add the dissipation figures from section 12.1.2 *Power dissipation* on page 261 for each drive that is to be installed in the enclosure.
- 2. If an external EMC filter is to be used with each drive, add the dissipation figures from section 12.2.1 *EMC filter ratings* on page 273 for each external EMC filter that is to be installed in the enclosure.
- If the braking resistor is to be mounted inside the enclosure, add the average power figures from for each braking resistor that is to be installed in the enclosure.
- 4. Calculate the total heat dissipation (in Watts) of any other equipment to be installed in the enclosure.
- 5. Add the heat dissipation figures obtained above. This gives a figure in Watts for the total heat that will be dissipated inside the enclosure.

Calculating the size of a sealed enclosure

The enclosure transfers internally generated heat into the surrounding air by natural convection (or external forced air flow); the greater the surface area of the enclosure walls, the better is the dissipation capability. Only the surfaces of the enclosure that are unobstructed (not in contact with a wall or floor) can dissipate heat.

Calculate the minimum required unobstructed surface area $\mathbf{A}_{\mathbf{e}}$ for the enclosure from:

Where:

A_e =

 A_e Unobstructed surface area in m² (1 m² = 10.9 ft²)

Ρ

 $\overline{k(T_{int} - T_{ext})}$

- T_{ext} Maximum expected temperature in ^oC *outside* the enclosure
- T_{int} Maximum permissible temperature in ^oC *inside* the enclosure
- P Power in Watts dissipated by *all* heat sources in the enclosure
- k Heat transmission coefficient of the enclosure material in W/m²/°C

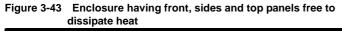
Example

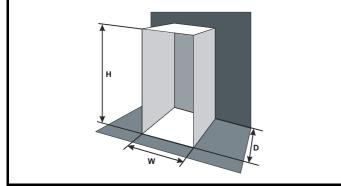
To calculate the size of an enclosure for the following:

- Two SP 1406 models operating at the Normal Duty rating
- Each drive to operate at 6kHz PWM switching frequency
- Filter 16 A (4200-6119) external EMC filter for each drive
- Braking resistors are to be mounted outside the enclosure
- Maximum ambient temperature inside the enclosure: 40°C
- Maximum ambient temperature outside the enclosure: 30°C

Safety Product Mechanical Information Electrical Installation Getting Basic Running the motor Optimisation Smartcard operation			Diagnostics UL Listing Information
--	--	--	---------------------------------------

Dissipation of each drive: 147 W (see section 12.1.2 *Power dissipation* on page 261)


Dissipation of each external EMC filter: 9.2 W (max) (see section 12.2.1 *EMC filter ratings* on page 273)


Total dissipation: 2 x (147 + 9.2) = 312.4 W

The enclosure is to be made from painted 2 mm (0.079 in) sheet steel

having a heat transmission coefficient of 5.5 W/m²/ $^{\circ}$ C. Only the top, front, and two sides of the enclosure are free to dissipate heat.

The value of 5.5 W/m²/°C can generally be used with a sheet steel cubicle (exact values can be obtained by the supplier of the material). If in any doubt, allow for a greater margin in the temperature rise.

Insert the following values:

 T_{int}
 40°C

 T_{ext}
 30°C

k 5.5

P 312.4 W

The minimum required heat conducting area is then:

$$A_{e} = \frac{312.4}{5.5(40-30)}$$

=5.68 m² (61.9 ft²) (1 m² = 10.9 ft²)

Estimate two of the enclosure dimensions - the height (H) and depth (D), for instance. Calculate the width (W) from:

$$W = \frac{A_e - 2HD}{H + D}$$

Inserting $\mathbf{H} = 2m$ and $\mathbf{D} = 0.6m$, obtain the minimum width:

$$W = \frac{5.68 - (2 \times 2 \times 0.6)}{2 + 0.6}$$

=1.262 m (49.7 in)

If the enclosure is too large for the space available, it can be made smaller only by attending to one or all of the following:

- Using a lower PWM switching frequency to reduce the dissipation in the drives
- Reducing the ambient temperature outside the enclosure, and/or applying forced-air cooling to the outside of the enclosure
- Reducing the number of drives in the enclosure
- Removing other heat-generating equipment

Calculating the air-flow in a ventilated enclosure

The dimensions of the enclosure are required only for accommodating the equipment. The equipment is cooled by the forced air flow.

Calculate the minimum required volume of ventilating air from:

$$V = \frac{3kP}{T_{int} - T_{ext}}$$

Where:

- V Air-flow in m³ per hour (1 m³/hr = 0.59 ft³/min)
- T_{ext} Maximum expected temperature in °C *outside* the enclosure
- T_{int} Maximum permissible temperature in °C *inside* the enclosure
- P Power in Watts dissipated by *all* heat sources in the enclosure

$$r Ratio of $\frac{P_o}{P_i}$$$

Where:

P₀ is the air pressure at sea level

 $\mathbf{P}_{\mathbf{I}}$ is the air pressure at the installation

Typically use a factor of 1.2 to 1.3, to allow also for pressure-drops in dirty air-filters.

Example

To calculate the size of an enclosure for the following:

- Three SP1403 models operating at the Normal Duty rating
- Each drive to operate at 6kHz PWM switching frequency
- Filter 10A (4200-6118) external EMC filter for each drive
- Braking resistors are to be mounted outside the enclosure
- Maximum ambient temperature inside the enclosure: 40°C
- Maximum ambient temperature outside the enclosure: 30°C

Dissipation of each drive: 61 W

Dissipation of each external EMC filter: 6.9 W (max)

Total dissipation: 3 x (61 + 6.9) = 203.7 W

Insert the following values:

T _{int}	40°C
Text	30°C
k	1.3
Р	203.7 W
Then:	

$$V = \frac{3 \times 1.3 \times 203.7}{40 - 30}$$

= **79.4** m³/hr (46.9 ft³ /min) (1 m³/ hr = 0.59 ft³/min)

3.9 Cubicle design and drive ambient temperature

Drive derating is required for operation in high ambient temperatures

Totally enclosing or through panel mounting the drive in either a sealed cabinet (no airflow) or in a well ventilated cabinet makes a significant difference on drive cooling.

The chosen method affects the ambient temperature value (T_{rate}) which should be used for any necessary derating to ensure sufficient cooling for the whole of the drive.

The ambient temperature for the four different combinations is defined below:

- 1. Totally enclosed with no air flow (<2 m/s) over the drive $T_{rate} = T_{int} + 5^{\circ}C$
- 2. Totally enclosed with air flow (>2 m/s) over the drive $T_{rate} = T_{int}$
- 3. Through panel mounted with no airflow (<2 m/s) over the drive T_{rate} = the greater of T_{ext} +5°C, or T_{int}
- 4. Through panel mounted with air flow (>2 m/s) over the drive T_{rate} = the greater of T_{ext} or T_{int}

Where:

- T_{ext} = Temperature outside the cabinet
- T_{int} = Temperature inside the cabinet
- T_{rate} = Temperature used to select current rating from tables in Chapter 12 *Technical Data*.

ŀ

1	Safety	Product	Mechanical	Electrical	Getting	Basic	Running the	Optimisation	Smartcard	Onboard	Advanced	Technical	Diagnostics	UL Listing
	Information	Information	Installation	Installation	Started	Parameters	motor	Optimisation	operation	PLC	Parameters	Data	Diagnostics	Information

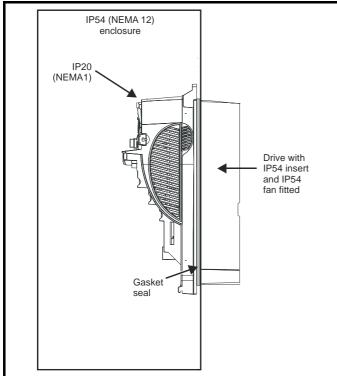
3.10 Heatsink fan operation

The Unidrive SP is ventilated by an internal heatsink mounted fan. The fan housing forms a baffle plate, channelling the air through the heatsink chamber. Thus, regardless of mounting method (surface mounting or through-panel mounting), the fitting of additional baffle plates is not required.

Ensure the minimum clearances around the drive are maintained to allow air to flow freely.

The heatsink fan on Unidrive SP size 1 and 2 is a dual speed fan and on size 3 to 6 it is a variable speed fan. The drive controls the speed at which the fan runs based on the temperature of the heatsink and the drive's thermal model system. The Unidrive SP size 3 to 6 is also fitted with single speed fan to ventilate the capacitor bank.

The heatsink fan on Unidrive SP size 1 to 5 is supplied internally by the drive. The heatsink fan on size 6 requires an external 24Vdc supply. See section 4.4 *Heatsink fan supply* on page 73 for more information.


3.11 IP Rating (Ingress Protection)

An explanation of IP Rating is provided in section 12.1.9 *IP Rating* (*Ingress Protection*) on page 265.

The Unidrive SP is rated to IP20 pollution degree 2 (dry, non-conductive contamination only) (NEMA 1). However, it is possible to configure the drive to achieve IP54 rating (NEMA 12) at the rear of the heatsink for through-panel mounting (some current derating is required for size 1 and 2).

This allows the front of the drive, along with various switchgear, to be housed in an IP54 (NEMA 12) enclosure with the heatsink protruding through the panel to the external environment. Thus, the majority of the heat generated by the drive is dissipated outside the enclosure maintaining a reduced temperature inside the enclosure. This also relies on a good seal being made between the heatsink and the backplate using the gasket provided.

Figure 3-44 Example of IP54 (NEMA 12) rating layout

In order to achieve the high IP rating at the rear of the heatsink with Unidrive SP size 1 and 2, it is necessary to seal a heatsink vent by fitting the IP54 insert as shown in Figure 3-45 and Figure 3-46.

For increased fan lifetime in a dirty environment the heatsink fan must be replaced with an IP54 rated fan. Contact the supplier of the drive for

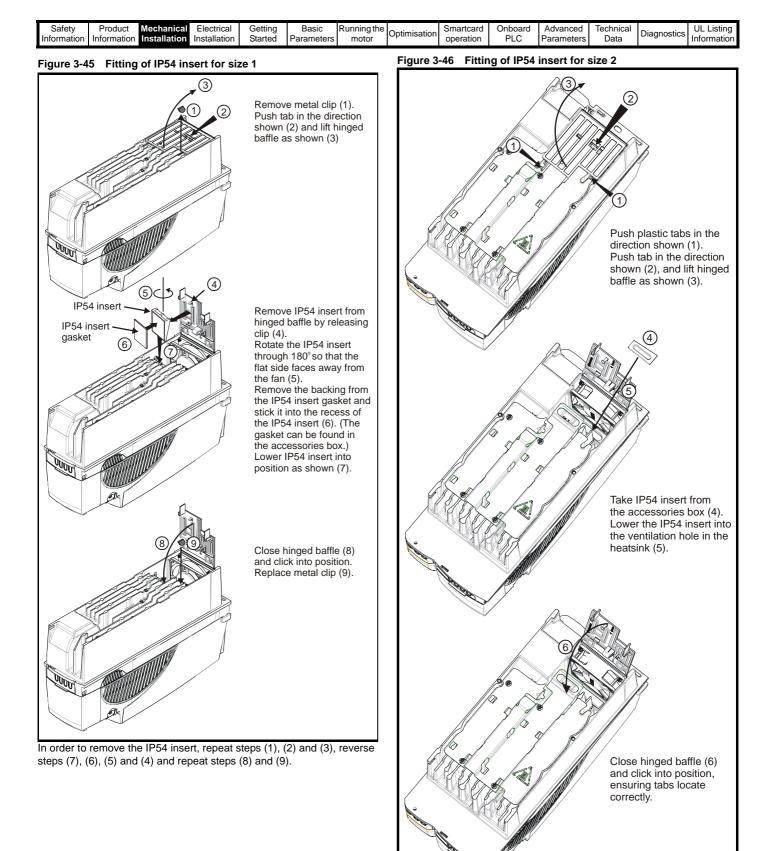
The guidelines in Table 3-2 should be followed.

Table 3-2 Environment considerations

Environment	IP54 Insert	Fan	Comments
Clean	Not fitted	Standard	
Dry, dusty (non- conductive)	Fitted	Standard	Regular cleaning recommended. Fan lifetime may be reduced.
Dry, dusty (conductive)	Fitted	Standard / IP54	Regular cleaning recommended. Fan lifetime may be reduced.
IP54 compliance	Fitted	IP54	Regular cleaning recommended.

NOTE

A current derating must be applied to the Unidrive SP size 1 and 2 if the IP54 insert and/or IP54 rated fan are fitted. Derating information is provided in section 12.1.1 *Power and current ratings (Derating for switching frequency and temperature)* on page 257.


Failure to do so may result in nuisance tripping.

NOTE

When designing an IP54 (NEMA 12) cubicle (Figure 3-44), consideration should be made to the dissipation from the front of the drive.

Table 3-3 Power losses from the front of the drive when throughpanel mounted

Frame size	Power loss
1	≤50W
2	≤75W
3	≤100W
4	≤204W
5	≤347W
6	≤480W

In order to remove the IP54 insert, repeat steps (1) (2) and (3), reverse steps (5) and (4) and repeat step (6).

Safety Product Mechanical Installation Electrical Installation Getting Basic Running the motor Optimisation	Smartcard operation Onboard PLC Advanced Parameters Technical Data Diagnostics UL Listing Information
--	--

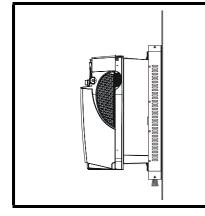
3.12 External EMC filter

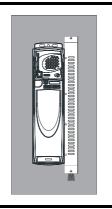
In order to provide our customers with a degree of flexibility, external EMC filters in two types. Filter details for each drive rating are provided in the tables below. Both filter types meet the same specifications.

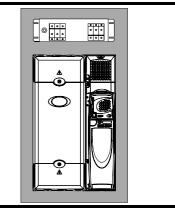
 Table 3-4
 Drive EMC filter details (size 1 to 6)

Drive	type	1	type2	
Drive	part no.	Weight	part no.	Weight
SP1201 to SP1204	4200-6118	1.4 kg (3.1 lb)	4200-6121	2.1 kg (4.6 lb)
3F1201 10 3F1204	4200-6119	1.4 Kg (3.1 lb)	4200-6120	2.1 Kg (4.0 lb)
SP1401 to SP1404	4200-6118	1.4 kg (3.1 lb)	4200-6121	2.1 kg (1.6 lb)
SP1405 to SP1406	4200-6119	1.4 Kg (3.1 lb)	4200-6120	2.1 kg (4.6 lb)
SP2201 to SP2203	4200-6210	2.0 kg (4.4 lb)	4200-6211	3.3 kg (7.3 lb)
SP2401 to SP2404	4200-6210	2.0 kg (4.4 lb)	4200-6211	3.3 kg (7.3 lb)
SP3201 to SP3202	4200-6307	3.5 kg (7.7 lb)	4200-6306	5.1 kg (11.2 lb)
SP4201 to SP4203	4200-6406	4.0 kg (8.8 lb)	4200-6405	7.8 kg (17.2 lb)
SP3401 to SP3403	4200-6305	3.5 kg (7.7 lb)	4200-6306	5.1 kg (11.2 lb)
SP3501 to SP3507	4200-6309	3.3 Kg (7.7 lb)	4200-6308	5.1 kg (11.2 lb)
SP4401 to SP4403	4200-6406	4.0 kg (8.8 lb)	4200-6405	7.8 kg (17.2 lb)
SP4601 to SP4606	4200-6408	3.8 kg (8.4 lb)	4200-6407	8.0 kg (17.6 lb)
SP5401 to SP5402	4200-6503	6.8 kg (15.0 lb)	4200-6501	12.0 kg (26.5 lb)
SP5601 to SP5602	4200-6504	4.4 kg (9.7 lb)	4200-6502	10.0 kg (22.0 lb)
SP6401 to SP6402	4200-6603	5.25 kg (11.6 lb)	4200-6601	
SP6601 to SP6602	4200-6604		4200-6602	

For free standing cubicle drives (size 8 and 9), EMC filters can be sourced from EPA. See Table 3-5 for details.

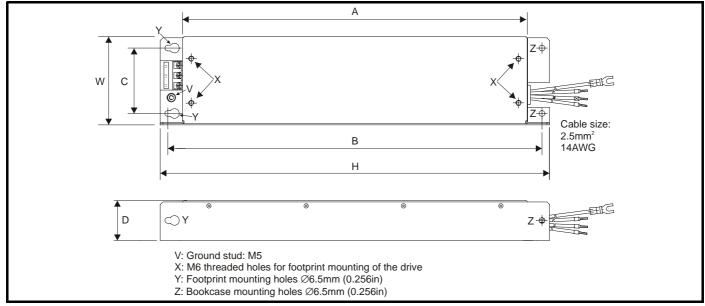

Table 3-5 Free standing cubicle drive EMC filter details (size 8 and 9)


Drive	Power (kW)	Input (A)	Filter rating (A)	Filter (V)	type2	type1
SP8411	185/200	408	600	415	B84143-B600-S20	FN3359-600-99
SP8412	225/250	467	600	415	B84143-B600-S20	FN3359-600-99
SP8413	250/315	576	600	415	B84143-B600-S20	FN3359-600-99
SP8414	315/355	678	1000	415	B84143-B1000-S20	FN3359-1000-99
SP9411	355/400	864	1000	415	B84143-B1000-S20	FN3359-1000-99
SP9412	400/450	864	1000	415	B84143-B1000-S20	FN3359-1000-99
SP9413	450/500	935	1000	415	B84143-B1000-S20	FN3359-1000-99
SP9414	500/560	1151	1600	415	B84143-B1600-S20	FN3359-1600-99
SP9415	560/675	1356	1600	415	B84143-B1600-S20	FN3359-1600-99

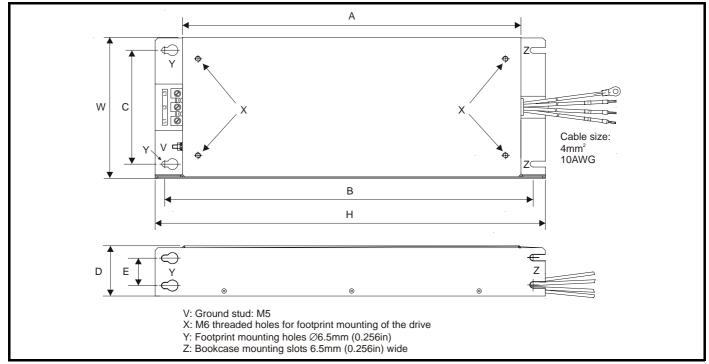

The external EMC filters for sizes 1 to 3 can be footprint or bookcase mounted, see Figure 3-47 and Figure 3-48. The external EMC filters for sizes 4 to 6 are designed to be mounted above the drive, as shown in Figure 3-49.

Mount the external EMC filter following the guidelines in section 4.11.5 Compliance with generic emission standards on page 88.

Figure 3-47 Footprint mounting the EMC filter Figure 3-48 Bookcase mounting the EMC filterFigure 3-49 Size 4 to 6 mounting of EMC filter



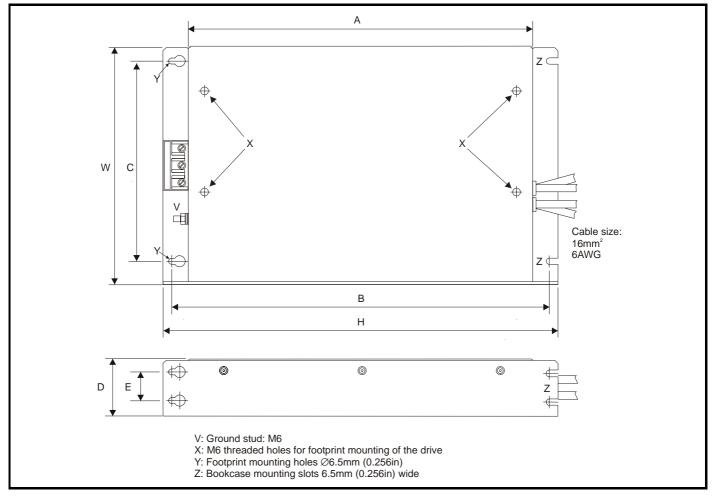
Safety Product Mechanical Information Electrical Installation Getting Started Basic Running the motor Optimisa	ation Smartcard operation PLC Advanced Data Diagnostics UL Listing Information
--	--


Figure 3-50 Size 1 external EMC filter

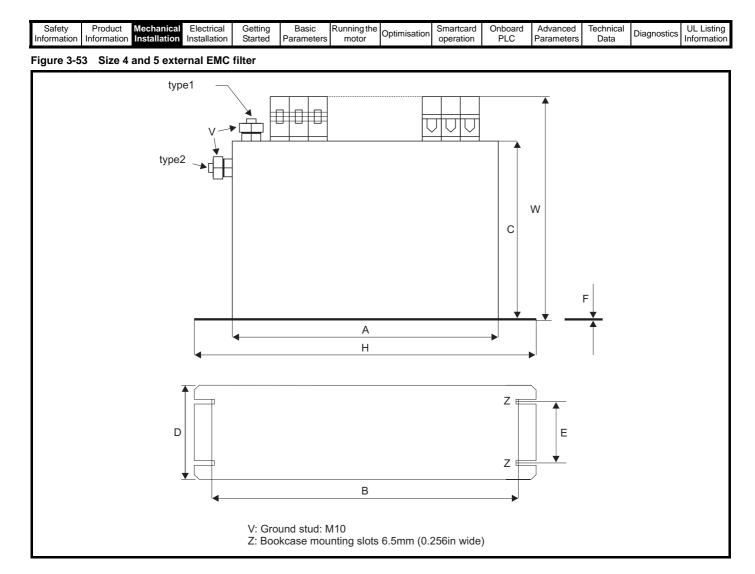
All filter mounting holes are suitable for M6 fasteners.

part no.		Α	В	С	D	Н	W
4200-6118	tupo1					440 mm	
4200-6119	type1	390 mm	423 mm	74 mm	45 mm	(17.323 in)	100 mm
4200-6121	type2	(15.354 in)	(16.654 in)	(2.913 in)	(1.772 in)	450 mm	(3.937 in)
4200-6120	typez					(17.717 in)	

Figure 3-51 Size 2 external EMC filter

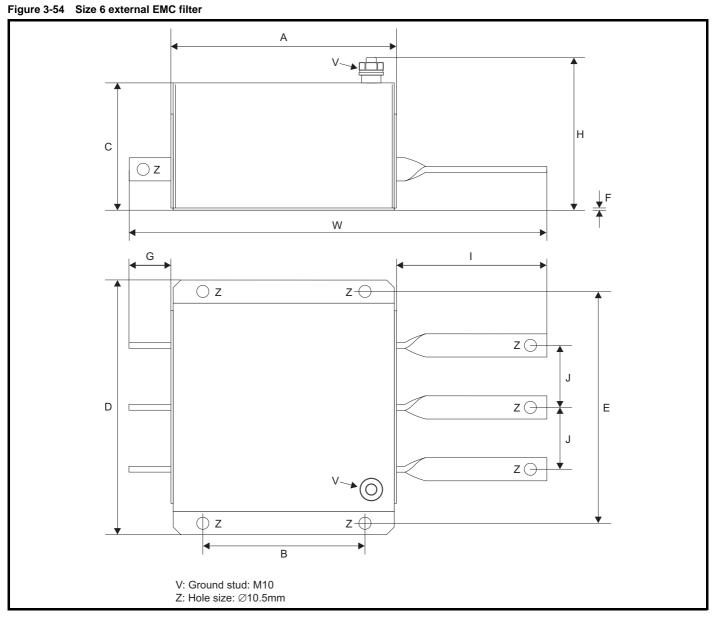


All filter mounting holes are suitable for M6 fasteners.


part no.		Α	В	С	D	E	Н	W
4200-6210	type1	371.5 mm	404.5 mm	125 mm	55 mm	30 mm	428.5 mm (16.870 in)	155 mm
4200-6211	type2	(14.626 in)	(15.925 in)	(4.921 in)	(2.165 in)	(1.181 in)	431.5 mm (16.988 in)	(6.102 in)

Safety Product Mechanical Information Electrical Installation Getting Started Basic Running the motor Optimisation	Smartcard operation	Onboard PLC	Advanced Parameters	Technical Data	Diagnostics	UL Listing Information
--	------------------------	----------------	------------------------	-------------------	-------------	---------------------------

Figure 3-52 Size 3 external EMC filter



part no.		A	В	С	D	E	Н	W
4200-6305		201					44.4	
4200-6307	type1	361 mm (14.213 in)	200	010	<u> </u>	20	414 mm (16.299 in)	050
4200-6309		(14.21311)	396 mm (15.591 in)	210 mm (8.268 in)	60 mm (2.362 in)	30 mm (1.181 in)	(10.200 m)	250 mm (9.843 in)
4200-6306	type2	365 mm	(10.001 11)	(0.200 11)	(2.002 11)	(1.10111)	425 mm	(3.043 11)
4200-6308	typez	(14.370 in)					(16.732 in)	

part no.		Α	В	С	D	E	F	Н	W	
4200-6406					100 mm	65 mm			225 mm (8.858 in)	
4200-6408	type1	t mod		170 mm	(3.937 in)	(2.559 in)	1.5 mm		208 mm (8.189 in)	
4200-6503		type i			(6.693 in)	120 mm (4.724 in)	85 mm (3.346 in)	(0.059in)		249 mm (9.803 in)
4200-6504			275 mm (10.827 in)		100 mm (3.937 in)	65 mm (2.559 in)		300 mm (11.811 in)	225 mm (8.858 in)	
4200-6405				150 mm	90 mm	65 mm	2 mm		207 mm (8.150 in)	
4200-6407	type2			(5.906 in)	(3.543in)	(2.559 in)	(0.079 in)		205 mm (8.071 in)	
4200-6501 4200-6502				170 mm (6.693 in)	120 mm (4.724 in)	85 mm (3.346 in)	1 mm (0.039 in)		249 mm (9.803 in)	

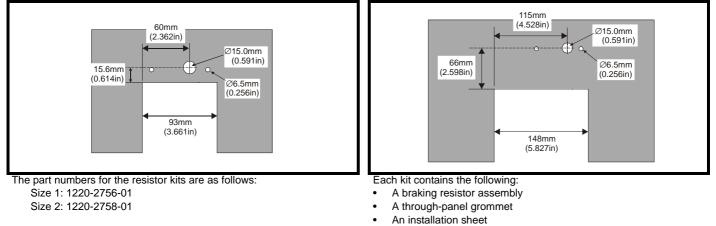
SafetyProductMechanical InformationElectrical InstallationGetting StartedBasic ParametersRunning the motorOptimisationSmartcard operationOnboard PLCAdvanced Parameters	Technical Data	Diagnostics .	UL Listing nformation
---	-------------------	---------------	--------------------------

part no.		Α	В	С	D	E	F	G	Н	I	J	w
4200-6603	type1	196 mm (7.717 in)	139.9 mm (5.508 in)	108 mm (4.252 in)	230 mm (9.055 in)	210 mm (8.268 in)	2 mm (0.079in)	38 mm (1.496 in)	136 mm (5.354 in)	128 mm (5.039 in)	53.5 mm (2.106 in)	364 mm (14.331 in)

Safet	Product	Mechanical		Getting	Basic	Running the	Optimisation	Smartcard	Onboard	Advanced	Technical	Diagnostics	UL Listing
Informa	on Information	Installation	Installation	Started	Parameters	motor	opuniounon	operation	PLC	Parameters	Data	Diagnootioo	Information

3.13 Heatsink mounted braking resistor

If the drive has been used at high load levels for a period of time, the heatsink and heatsink mounted braking resistor can reach temperatures in excess of 70°C (158°F). Human contact with the heatsink and heatsink mounted braking resistor should be prevented.


To avoid the risk of fire when the drive is surface mounted with the braking resistor fitted, the back plate should be a non-flammable material.

The Unidrive SP size 1and 2 have been designed with an optional space-saving heatsink mounted resistor. The resistor can be fitted within the heatsink fins of the drive. When the heatsink mounted resistor is used, an external thermal protection device is not required as the resistor is designed such that it will fail safely under fault conditions. The in-built software overload protection is set up at default to protect the resistor. The resistor is rated to IP54 (NEMA12).

If the drive is to be through-panel mounted with the heatsink mounted brake resistor fitted, then the aperture in the panel through which the drive is mounted must be modified as shown in Figure 3-55 and Figure 3-56. This is in order to allow for the braking resistor cables and grommets.

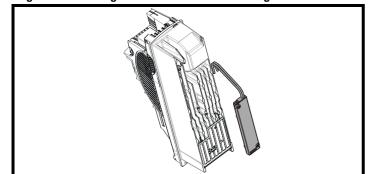
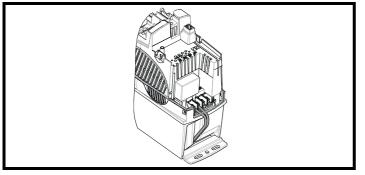
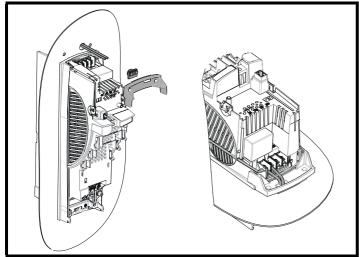


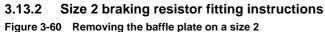
Figure 3-56 Through-panel mounting cut-out details for size 2


A wire clip (Size 2 only)

3.13.1 Size 1 braking resistor fitting instructions Figure 3-57 Fitting the heatsink mounted braking resistor on size 1

- Remove both terminal covers as detailed in section 3.3.1 Removing the terminal covers on page 26.
- Remove the two break-outs that line-up with the BR and +DC terminal connections as detailed in section 3.4.4 *Removing the finger-guard and DC terminal cover break-outs* on page 36.
- Fit the braking resistor to the heatsink as shown in Figure 3-57. The resistor is fitted with captive screws.
- The screws should be tightened to a maximum torque of 2 N m (1.5 lb ft).
- Ensure the cables are routed between the fins of the heatsink, and that the cables are not trapped between heatsink fins and the resistor.


Figure 3-58 Connecting the brake resistor on a surface mounted size 1



- Fit the DC terminal cover grommets supplied in the accessory box with the drive, to the cables. To ensure a good seal, the grommets are a tight fit. Lubrication may be required to help fit the grommets to the cables.
- Terminate the cables with suitable crimps and connect to the BR and +DC terminals. Tighten the screw terminals to a maximum torque of 1.5 Nm (1.1 lb ft).
- Replace both terminal covers.

Safety Information	Product Information	Mechanical Installation	Electrical Installation	Getting Started	Basic Parameters	Running the motor	Optimisation	Smartcard operation	Onboard PLC	Advanced Parameters	Technical Data	Diagnostics	UL Listing Information

Figure 3-59 Connecting the brake resistor on a through-panel mounted size 1

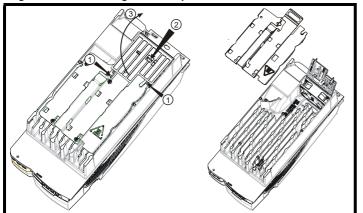
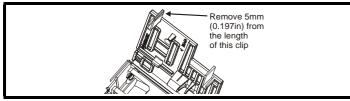
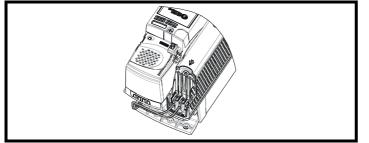



Figure 3-61 Modifying the fan baffle on a size 2

Fitting the heatsink mounted braking resistor on a size 2

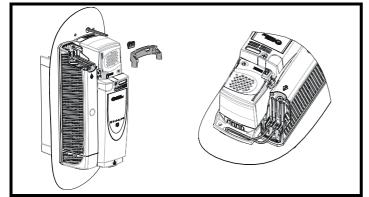
Route the cables between these two heatsink fins


- See Figure 3-55 for through-panel mounting cut-out details.
- Pass the cables through the hole in the panel and fit the throughpanel grommet.
- Fit the through-panel mounting bracket.
- Fit the DC terminal cover grommets supplied in the accessory box with the drive, to the cables. To ensure a good seal, the grommets are a tight fit. Lubrication may be required to help fit the grommets to the cables.
- Terminate the cables with suitable crimps and connect to the BR and +DC terminals. Tighten the screw terminals to a maximum torque of 1.5 Nm (1.1 lb ft).
- Replace both terminal covers.

- Remove the DC cover as detailed in section 3.3.1 *Removing the terminal covers* on page 26.
- Remove the two break-outs that line-up with the BR and +DC terminal connections as detailed in section 3.4.4 *Removing the finger-guard and DC terminal cover break-outs* on page 36.
- Lift the hinged fan baffle by pushing plastic tabs in the direction shown (1). Push tab in the direction shown (2), and lift the baffle as shown (3).
- Remove the metal heatsink baffle plate by removing the two screws. These two screws are no longer required.
- Remove 5mm (0.197in) from the length of the clip on the plastic fan baffle.
- Fit clip to heatsink in the position shown in diagram opposite. Route the long cables of the resistor assembly between the fins of the heatsink as shown in Figure 3-62.
- Fit the heatsink baffle plate in place with the cables routed underneath. Ensure the cables are not trapped between a heatsink fin and the baffle plate.
- Fit the braking resistors to the heatsink. The resistors are fitted with captive screws.
- The screws should be tightened to a maximum torque of 2.0 N m (1.5 lb ft).
- Close the hinged fan baffle.
- Fit cables to heatsink clip.

Figure 3-62

	Product Mechanic formation Installation		Getting Started	Basic Parameters	Running the motor	Optimisation	Smartcard operation	Onboard PLC	Advanced Parameters	Technical Data	Diagnostics	UL Listing Information
--	--	--	--------------------	---------------------	-------------------	--------------	---------------------	----------------	------------------------	-------------------	-------------	---------------------------


Figure 3-63 Connecting the brake resistor on a surface mounted size 2

•	Fit the DC terminal cover grommets supplied in the accessory box
	with the drive, to the cables. To ensure a good seal, the grommets
	are a tight fit. Lubrication may be required to help fit the grommets
	to the cables.

- Terminate the cables with suitable crimps and connect to the BR and DC2 terminals.
- Replace the terminal cover.

Figure 3-64 Connecting the brake resistor on a through-panel mounted size 2

- See Figure 3-56 for through-panel mounting cut-out details.
- Pass the cables through the hole in the panel and fit the hole grommet.
- Fit the mounting bracket.
- Fit the DC terminal cover grommets supplied in the accessory box with the drive, to the cables. To ensure a good seal, the grommets are a tight fit. Lubrication may be required to help fit the grommets to the cables.
- Terminate the cables with suitable crimps and connect to the BR and DC2 terminals.
- Replace the terminal cover.

3.13.3 Braking resistor overload protection parameter settings Failure to observe the following information may damage the resistor.

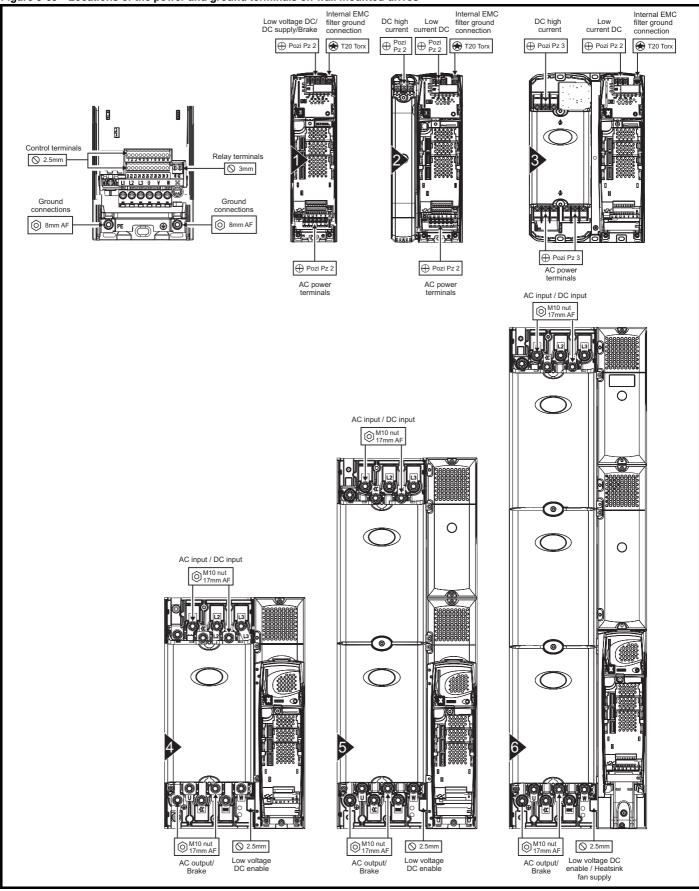
The Unidrive SP software contains an overload protection function for a braking resistor. On Unidrive SP size 1 and 2 this function is ter settings.

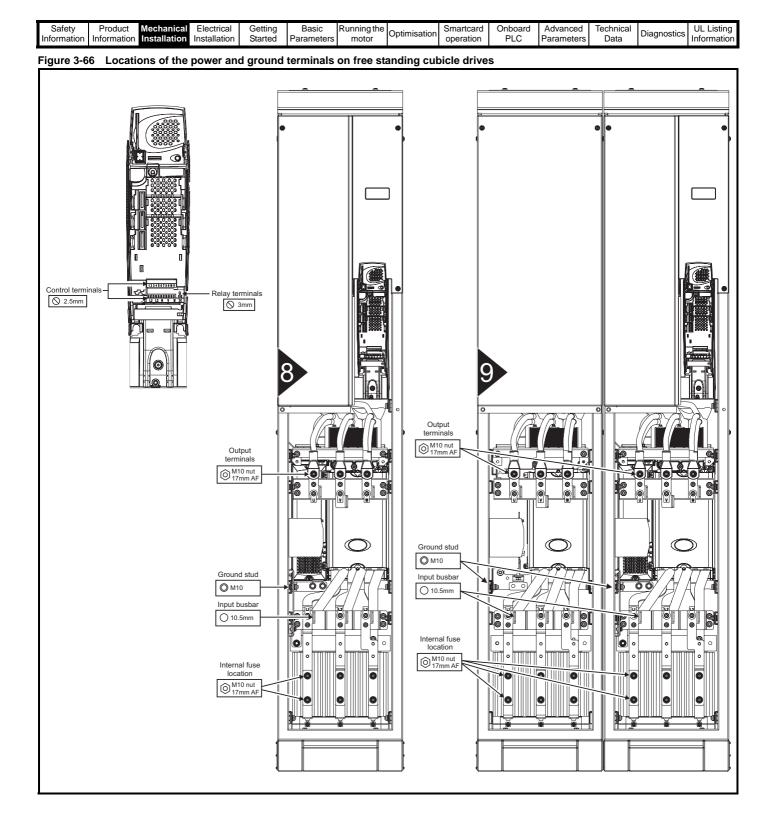
enable	d at d	defaul	t to	protect	the	heatsin	k mounted	resistor.	Below	are t	he	parame	ete

Parameter	200V drive	400V drive		
Full power braking time	Pr 10.30	0.09	0.02	
Full power braking period	Pr 10.31	2.0		

For more information on the braking resistor software overload protection, see the Unidrive SP Advanced User Guide.

If the heatsink mounted braking resistor is to be used at more than half of its average power rating then the drive's cooling fan must be set to full speed by setting Pr 6.45 to On (1).


See section 4.9.1 Heatsink mounted braking resistor on page 80 for the resistor specifications.


Safety Information	Product Information	Mechanical Installation	Electrical Installation	Getting Started	Basic Parameters	Running the motor	Optimisation	Smartcard operation	Onboard PLC	Advanced Parameters	Technical Data	Diagnostics	UL Listing Information
mormation	Information	motaniation	matanation	Otaricu	i arameters	motor		operation	PLC	1 arameters	Data		monnation

3.14 Electrical terminals

3.14.1 Location of the power and ground terminals

Figure 3-65 Locations of the power and ground terminals on wall mounted drives

Diagnostics	Safety Information	Product Information	Mechanical Installation	Electrical Installation	Getting Started	-	Running the motor	Optimisation	Smartcard operation	PLC	Advanced Parameters	Dala	Diagnostics	UL Listing Information
-------------	-----------------------	------------------------	----------------------------	----------------------------	--------------------	---	-------------------	--------------	---------------------	-----	------------------------	------	-------------	---------------------------

3.14.2 Terminal sizes and torque settings

To avoid a fire hazard and maintain validity of the UL listing, adhere to the specified tightening torques for the power and ground terminals. Refer to the following tables.

Table 3-6 Drive control and relay terminal data

Model	Connection type	Torque setting
All	Plug-in terminal block	0.5 N m (0.4 lb ft)

Table 3-7 Wall mounted drive power terminal data

Model size	AC terminals	High current DC and braking	Low voltage DC	Ground terminal
1	Plug-in		k (M4 screws) (1.1 lb ft)	
2	terminal block 1.5 N m (1.1 lb ft)	Terminal block (M5 screws) 1.5 N m (1.1 lb ft)	Terminal block (M4 screws) 1.5 N m	Stud (M5) 4.0 N m 2.9 lb ft
3		k (M6 screws) 1.8 lb ft	(1.1 lb ft)	6.0 N m 4.4 lb ft
4	M10	stud		M10 stud
5		Nm		12 N m
6	(11.1	lb ft)		(8.8 lb ft)
	Torq	ue tolerance		±10%

Table 3-8 Free standing cubicle drive terminal data

Model size	AC terminals	High current DC and braking	Internal fuse	Ground terminal		
8	2 x M10 cleara	•	12 N m			
9	phase for pa	rallel cables.	(8.8 lb ft)			
	Torq	ue tolerance		±10%		

Table 3-9 Type1 external EMC filter terminal data

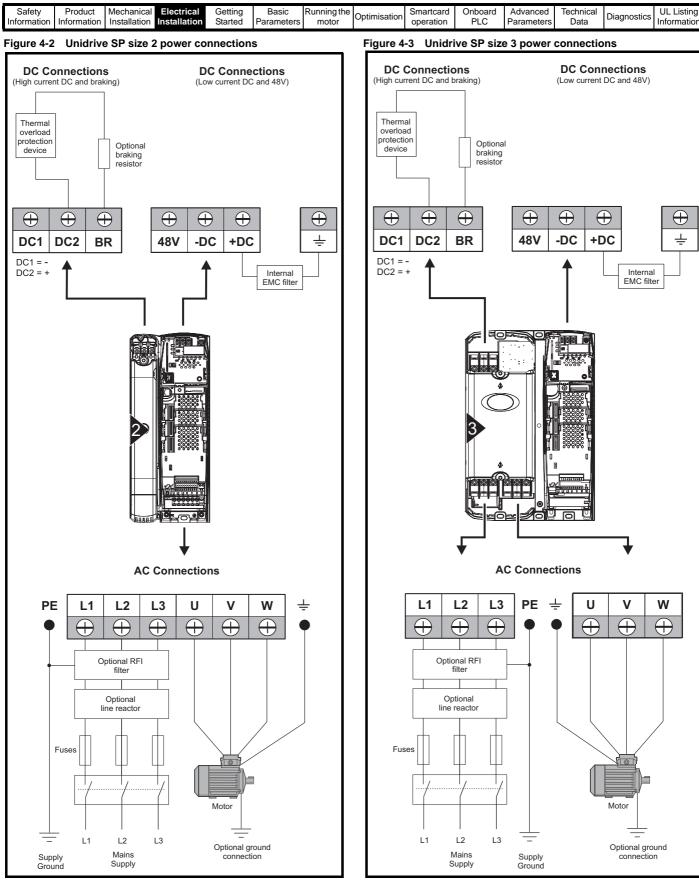
part		wer ctions		ound ections
number	Max cable size	Max torque	Ground size	Max torque
4200-6118	4mm ²	0.8 N m	M5	3.5 N m
4200-6119	12AWG	(0.6 lb ft)	IVIO	(2.6 lb ft)
4200-6210	10mm ² 8AWG	2 N m (1.5 lb ft)	M5	3.5 N m (2.6 lb ft)
4200-6305	10 2	2.2 N m		3.9 N m
4200-6307	16mm ² 6AWG	(1.6 lb ft)	M6	3.9 N m (2.9 lb ft)
4200-6309	DAWG	(1.0 10 10)		(2.5 10 11)
4200-6406	50mm ² 0AWG	8 N m (5.9 lb ft)	M10	25 N m (18.4 lb ft)
4200-6408	25mm ² 4AWG	2.3 N m (1.7 lb ft)	M6	3.9 N m (2.9 lb ft)
4200-6503	95mm ² 4/0AWG	20 N m (14.7 lb ft)	M10	25 N m (18.4 lb ft)
4200-6504	50mm ² 0AWG	8 N m (5.9 lb ft)	M10	25 N m (18.4 lb ft)
4200-6603			M10	25 N m (18.4 lb ft)
4200-6604				

Table 3-10 Type2 external EMC Filter terminal data

part	_	wer ections	Ground connections		
number	Max cable size	Max torque	Ground stud size	Max torque	
4200-6120	4mm ²	0.6 N m	M5	3.0 N m	
4200-6121	12AWG	(0.4 lb ft)	IVIS	(2.2 lb ft)	
4200-6211	10mm ² 8AWG	1.35 N m (1.0 lb ft)	M5	3.0 N m (2.2 lb ft)	
4200-6306	16mm ² 6AWG	2.2 N m (1.6 lb ft)	M6	5.1 N m	
4200-6308	10mm ² 8AWG	1.35 N m (1.0 lb ft)	MO	(3.8 lb ft)	
4200-6405	50mm ²	6.8 N m			
4200-6407	0AWG	(5.0 lb ft)	M10	10 N m	
4200-6501	95mm ²	20 N m	WITO	(7.4 lb ft)	
4200-6502	4/0AWG	(14.7 lb ft)			
4200-6601					
4200-6602					

3.15 Routine maintenance

The drive should be installed in a cool, clean, well ventilated location. Contact of moisture and dust with the drive should be prevented.

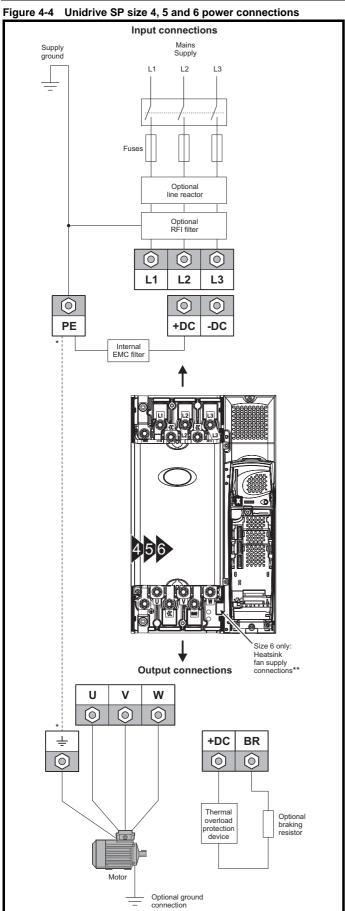

Regular checks of the following should be carried out to ensure drive / installation reliability are maximised:

Environment	
Ambient temperature	Ensure the enclosure temperature remains at or below maximum specified
Dust	Ensure the drive remains dust free – check that the heatsink and drive fan are not gathering dust. The lifetime of the fan is reduced in dusty environments.
Moisture	Ensure the drive enclosure shows no signs of condensation
Enclosure	
Enclosure door filters	Ensure filters are not blocked and that air is free to flow
Electrical	
Screw connections	Ensure all screw terminals remain tight
Crimp terminals	Ensure all crimp terminals remains tight – check for any discolouration which could indicate overheating
Cables	Check all cables for signs of damage

Safety Information	Product Mechanical Electrical Information Installation	Getting Basi Started Parame	0	Optimisa	tion	Smartcard operation	Onboard PLC	Advanced Parameters	Technical Data	Diagnostic	UL Listing Information
	Electrical Instal			4.1				ections			
product ar	e management features have been ad accessories, this chapter show	•		4.1.1 Figur				n <mark>nectio</mark> n e 1 power		ons	
 Interna EMC of Product 	nclude: IRE DISABLE function al EMC filter compliance with shielding / ground ct rating, fusing and cabling inform resistor details (selection / ratings	nation	3				Thermal overload protection device	C Connect	Cions		
	Electric shock risk The voltages present in the follor severe electric shock and may b • AC supply cables and connect • DC and brake cables, and c • Output cables and connectio • Many internal parts of the dri Unless otherwise indicated, cont insulated and must not be touch	e lethal: ections onnections ons ive, and external trol terminals are	l option units			⊕ 48V			braking resistor R Internal EMC filter		
	Isolation device The AC supply must be disconn- an approved isolation device bef from the drive or before any serv STOP function The STOP function does not ren from the drive, the motor or any	fore any cover is <i>r</i> icing work is pe	s removed rformed. voltages								
WARNING	SECURE DISABLE function The SECURE DISABLE functior dangerous voltages from the driv option units.										
	Stored charge The drive contains capacitors that potentially lethal voltage after the disconnected. If the drive has be supply must be isolated at least may continue.	e AC supply has een energised, th	been ne AC					C Connect	tions		
	Normally, the capacitors are disc resistor. Under certain, unusual f that the capacitors may fail to dis from being discharged by a volta terminals. If the drive has failed i display to go blank immediately, will not be discharged. In this ca Techniques or their authorised d	ault conditions, i scharge, or be p age applied to th in a manner that it is possible the se, consult Cont	t is possible revented e output causes the e capacitors				Optional RFI		JV	₩ ⊕	÷
	Equipment supplied by plug a Special attention must be given i equipment which is connected to and socket. The AC supply term connected to the internal capacit which are not intended to give sa terminals can be touched when from the socket, a means of auto from the drive must be used (e.g	if the drive is inso the AC supply inals of the drive tors through rec afety isolation. If the plug is disco pomatically isolati	by a plug e are tifier diodes the plug nnected ng the plug			Fuses	Optional line reactor		Motor		
	Permanent magnet motors Permanent magnet motors gene are rotated, even when the supp disconnected. If that happens th energised through its motor term If the motor load is capable of ro supply is disconnected, then the	ly to the drive is en the drive will hinals. tating the motor	become when the		Sup Gro		 L2 Mains Supply	l L3		I ground ection	

supply is disconnected, then the motor must be isolated from

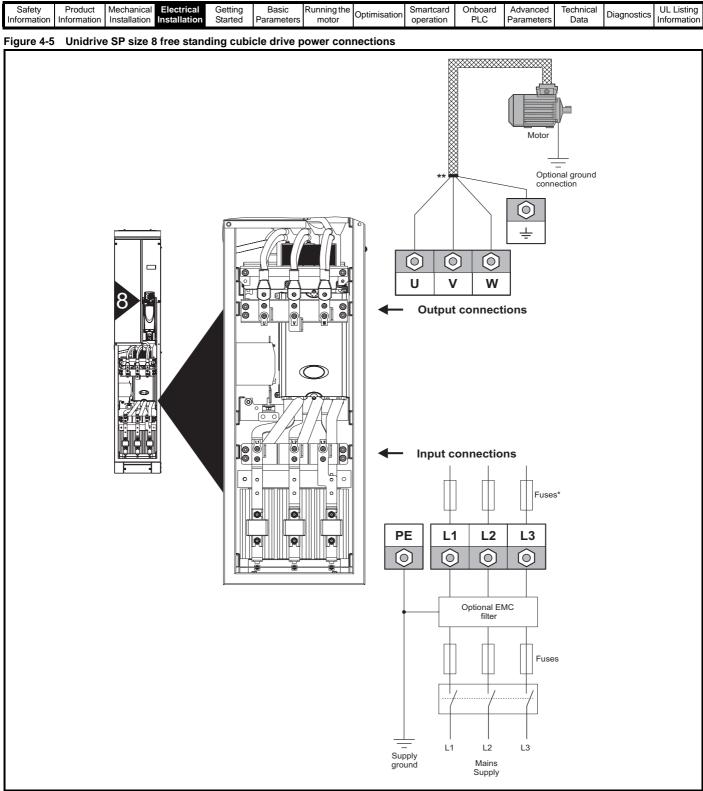
the drive before gaining access to any live parts.



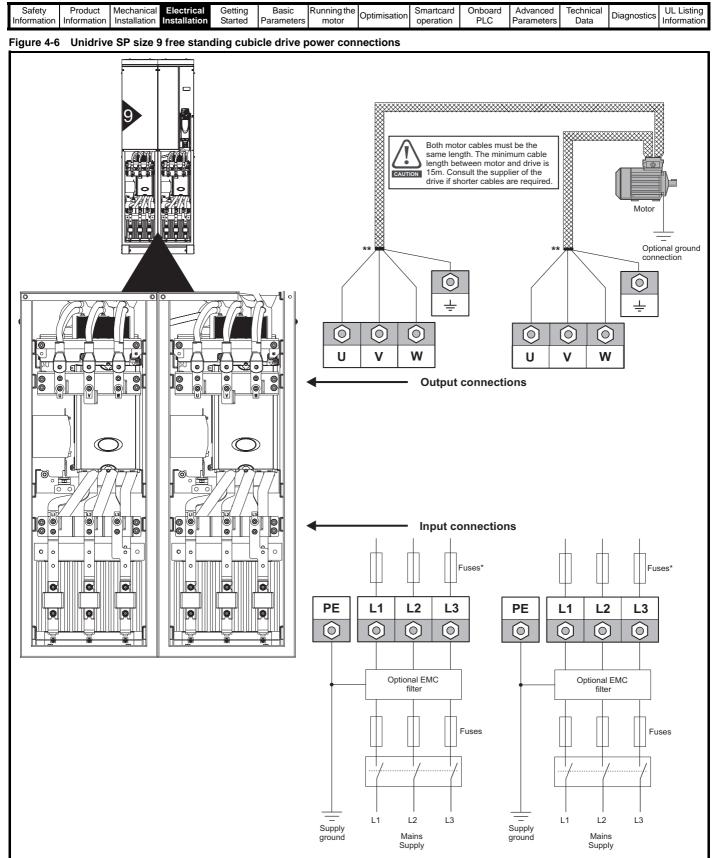
If the heatsink mounted resistor is used (size 1 and 2 only), an overload protection device is not required. The resistor is designed to fail safely under fault conditions.

See Figure 4-7 for further information on ground connections.

On Unidrive SP size 2 and 3, the high current DC connections must always be used when using a braking resistor, supplying the drive from DC (low voltage DC or high voltage DC) or using the drive in a parallel DC bus system. The low current DC connection is used to connect low voltage DC to the drive internal power supply and to connect the internal EMC filter. See Figure 4-8 for further information on ground connections.



^{*} See section 4.1.2 Ground connections .


** See section 4.4 Heatsink fan supply on page 73 for more information.

Unidrive SP User Guide

*Cubicles are supplied without internal fuses as standard, the user must fit them during installation. Fuses may be bought from EPA, see Table 4-5 on page 77 for further information.

**Cable shield must be bonded to gland plate.

*Cubicles are supplied without internal fuses as standard, the user must fit them during installation. Fuses may be bought from EPA, see Table 4-5 on page 77 for further information.

**Cable shield must be bonded to gland plate.

Safety Product Mechanical Electrical Getting Basic Running the motor Optimisati Information Installation Installation Started Parameters Motor Optimisati	on Smartcard operation	Onboard PLC	Advanced Parameters	Technical Data	Diagnostics	UL Listing Information
--	------------------------	----------------	------------------------	-------------------	-------------	---------------------------

4.1.2 Ground connections

Size 1

On a Unidrive SP size 1, the supply and motor ground connections are made using the studs located either side of the drive near the plug-in power connector. Refer to Figure 4-1 on page 66.

Size 2

On a Unidrive SP size 2, the supply and motor ground connections are made using the grounding bridge that locates at the bottom of the drive. See Figure 4-7 for details.

Size 3

On a Unidrive SP size 3, the supply and motor ground connections are made using an M6 nut and bolt that locates in the fork protruding from the heatsink between the AC supply and motor output terminals. See Figure 4-8 for details.

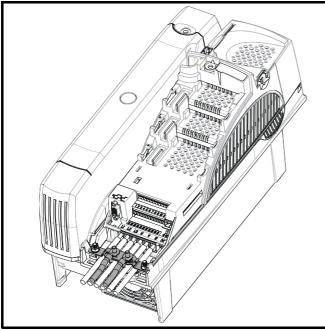
Size 4, 5 and 6

On a Unidrive SP size 4, 5 and 6, the supply and motor ground connections are made using an M10 bolt at the top (supply) and bottom (motor) of the drive. See Figure 4-9 on page 71.

The supply ground and motor ground connections to the drive are connected internally by a copper conductor with a cross-sectional area given below:

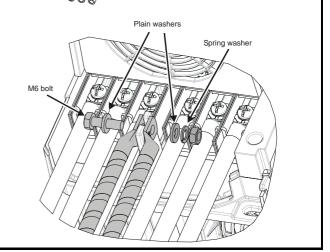
Size 4: 19.2mm² (0.03in², or slightly bigger than 6 AWG)

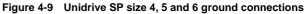
Size 5: 60mm² (0.09in², or slightly bigger than 1 AWG)

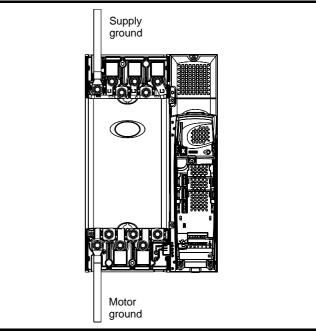

Size 6: 75mm² (0.12in², or slightly bigger than 2/0 AWG)

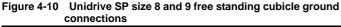
This connection is sufficient to provide the ground (equipotential bonding) connection for the motor circuit under the following conditions:

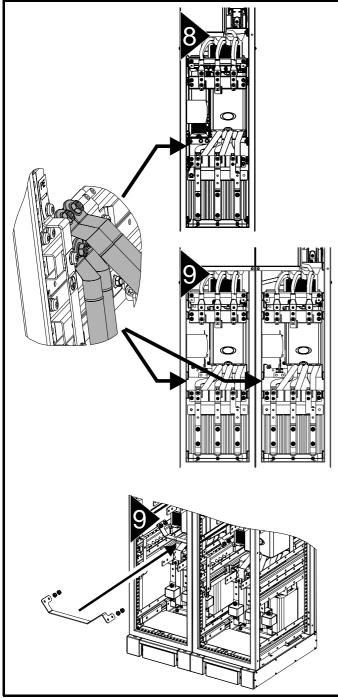
To standard	Conditions
IEC 60204-1 & EN 60204-1	Supply phase conductors having cross-sectional area not exceeding: Size 4: 38.4mm ² Size 5: 120mm ² Size 6: 150mm ²
NFPA 79	Supply protection device rating not exceeding: Size 4: 200A Size 5: 600A Size 6: 1000A


If the necessary conditions are not met, an additional ground connection must be provided to link the motor circuit ground and the supply ground.


Figure 4-7 Unidrive SP size 2 ground connections




Figure 4-8 Unidrive SP size 3 ground connections



Safety Information	Product Information	Mechanical Installation	Electrical Installation	Getting Started	Basic Parameters	Running the motor	Optimisation	Smartcard operation	Onboard PLC	Advanced Parameters	Technical Data	Diagnostics	UL Listing Information
-----------------------	------------------------	----------------------------	-------------------------	--------------------	---------------------	----------------------	--------------	---------------------	----------------	------------------------	-------------------	-------------	---------------------------

WARNING

The ground loop impedance must conform to the requirements of local safety regulations.

The drive must be grounded by a connection capable of carrying the prospective fault current until the protective device (fuse, etc.) disconnects the AC supply.

The ground connections must be inspected and tested at appropriate intervals.

4.2 AC supply requirements

Voltage:

SPX20X	200V to 240V ±10%
SPX40X	380V to 480V ±10%
SPX50X	500V to 575V ±10%
SPX60X	500V to 690V ±10%

Number of phases: 3

Maximum supply imbalance: 2% negative phase sequence (equivalent to 3% voltage imbalance between phases).

Frequency range: 48 to 65 Hz

For UL compliance only, the maximum supply symmetrical fault current must be limited to 100kA

4.2.1 Supply types

Drives rated for supply voltage up to 575V are suitable for use with any supply type, i.e. TN-S, TN-C-S, TT, IT, with grounding at any potential, i.e. neutral, centre or corner ("grounded-delta").

Grounded delta supplies >575V are not permitted.

Drives are suitable for use on supplies of installation category III and lower, according to IEC60664-1. This means they may be connected permanently to the supply at its origin in a building, but for outdoor installation additional over-voltage suppression (transient voltage surge suppression) must be provided to reduce category IV to category III.

т

Operation with IT (ungrounded) supplies:

Special attention is required when using internal or external EMC filters with ungrounded supplies, because in the event of a ground (earth) fault in the motor circuit the drive may not trip and the filter could be over-stressed. In this case, either

the filter must not be used (removed) or additional independent motor ground fault protection must be provided. Refer to Table 4-1.

For instructions on removal, refer to Figure 4-24 *Removal of internal EMC filter (size 1 to 3)* and Figure 4-25 *Removal of internal EMC filter (sizes 4 to 6)* on page 84. For details of ground fault protection contact the supplier of

For details of ground fault protection contact the supplier of the drive.

A ground fault in the supply has no effect in any case. If the motor must continue to run with a ground fault in its own circuit then an input isolating transformer must be provided and if an EMC filter is required it must be located in the primary circuit.

Unusual hazards can occur on ungrounded supplies with more than one source, for example on ships. Contact the supplier of the drive for more information.

Table 4-1	Behaviour of the drive in the event of a motor circuit
	ground (earth) fault with an IT supply

Drive size	Internal filter only	External filter (with internal)
1 & 2	Drive trips on fault	Drive trips on fault
3	May not trip – precautions required	Drive trips on fault
4 to 6	May not trip – precautions required	May not trip – precautions required

4.2.2 Supplies requiring line reactors

Input line reactors reduce the risk of damage to the drive resulting from poor phase balance or severe disturbances on the supply network.

Where line reactors are to be used, reactance values of approximately 2% are recommended. Higher values may be used if necessary, but may result in a loss of drive output (reduced torque at high speed) because of the voltage drop.

For all drive ratings, 2% line reactors permit drives to be used with a supply unbalance of up to 3.5% negative phase sequence (equivalent to 5% voltage imbalance between phases).

Severe disturbances may be caused by the following factors, for example:

Power factor correction equipment connected close to the drive.

Safety Product Mechanical Electrical Getting Basic Running the Optimisation Smartcard Onboard Advanced Technical Diagn Information Installation Installation Started Parameters motor Optimisation Smartcard Optimisation PLC Parameters Data Diagn	gnostics UL Listing Information
---	------------------------------------

- Large DC drives having no or inadequate line reactors connected to the supply.
- Direct-on-line started motor(s) connected to the supply such that when any of these motors are started, the voltage dip exceeds 20%.

Such disturbances may cause excessive peak currents to flow in the input power circuit of the drive. This may cause nuisance tripping, or in extreme cases, failure of the drive.

Drives of low power rating may also be susceptible to disturbance when connected to supplies with a high rated capacity.

Line reactors are particularly recommended for use with the following drive models when one of the above factors exists, or when the supply capacity exceeds 175kVA:

SP1201 SP1202 SP1203 SP1204 SP1401 SP1402 SP1403 SP1404

Model sizes SP1405 to SP4606 have an internal DC choke and SP5401 to SP6602 have internal AC line chokes, so they do not require AC line reactors except for cases of excessive phase unbalance or extreme supply conditions.

When required, each drive must have its own reactor(s). Three individual reactors or a single three-phase reactor should be used.

Reactor current ratings

The current rating of the line reactors should be as follows:

Continuous current rating:

Not less than the continuous input current rating of the drive

Repetitive peak current rating:

Not less than twice the continuous input current rating of the drive

4.2.3 Input inductor calculation.

To calculate the inductance required (at Y%), use the following equation:

$$L = \frac{Y}{100} \times \frac{V}{\sqrt{3}} \times \frac{1}{2\pi fI}$$

Where:

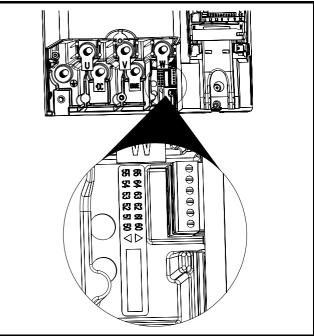
I = drive rated input current (A)
L = inductance (H)
f = supply frequency (Hz)
V = voltage between lines

4.3 Supplying the drive with DC / DC bus paralleling

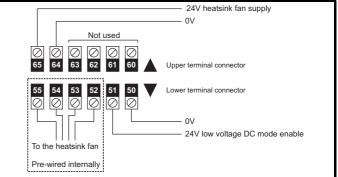
All drives except for size 8 and size 9 may be supplied with DC instead of 3 phase AC.

The connecting of the DC bus between several drives is typically used to:

- 1. Return energy from a drive which is being overhauled by the load to a second motoring drive.
- 2. Allow the use of one braking resistor to dissipate regenerative energy from several drives.


There are limitations to the combinations of drives which can be used in this configuration.

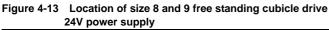
For application data, contact the supplier of the drive.

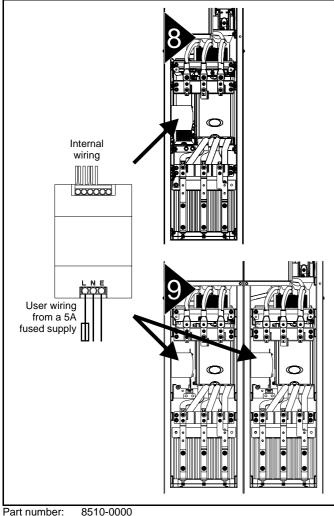

4.4 Heatsink fan supply

The heatsink fan on Unidrive SP size 1 to 5 is supplied internally by the drive. The heatsink fan on size 6 requires an external 24Vdc supply. The connections for the heatsink fan supply must be made to the upper terminal connector near to the W phase output on the drive. Figure 4-11 shows the position of the heatsink fan supply connections.

Figure 4-11 Location of the size 6 heatsink fan supply connections

Figure 4-12 Size 6 heatsink fan supply connections

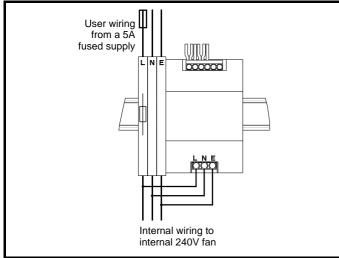



The heatsink fan supply requirements are as follows:

 s neatoning ian ouppiy requirement	
Nominal voltage:	24Vdc
Minimum voltage:	23.5Vdc
Maximum voltage:	27Vdc
Current drawn:	3.3A
Recommended power supply:	24V, 100W, 4.5A
Recommended fuse:	4A fast blow (I^2t less than 20A ² s)

The 24V power supply is supplied in the free standing cubicle but requires a user 115V or 240V supply.

Safety Information	Product Information	Mechanical Installation	Electrical Installation	Getting Started	Basic Parameters	Running the motor	Optimisation	Smartcard operation	Onboard PLC	Advanced Parameters	Technical Data	Diagnostics	UL Listing Information
-----------------------	------------------------	----------------------------	----------------------------	--------------------	---------------------	-------------------	--------------	---------------------	----------------	------------------------	-------------------	-------------	---------------------------



Part number:

Current rating: 10A Input voltage: 85 to 123 / 176 to 264Vac auto switching Cable size: 0.5mm² (20AWG) Supply fuse: 5A slow-blow

For the SP8414 model, the design of the 24V power supply is different due to the additional fan on the cubicle roof, as shown in Figure 4-14.

Figure 4-14 SP8414 24V power supply

4.5 Control 24Vdc supply

The 24Vdc input on the Unidrive SP has three main functions.

- It can be used to supplement the drive's own internal 24V when multiple SM-Universal Encoder Plus, or SM-I/O Plus modules are being used and the current drawn by these modules is greater than the drive can supply. (If too much current is drawn from the drive, the drive will initiate a 'PS.24V' trip)
- It can be used as a back-up power supply to keep the control circuits of the drive powered up when the mains supply is removed. This allows any fieldbus modules, application modules, encoders or serial communications to continue to operate.
- It can be used to commission the drive when mains voltages are not available, as the display operates correctly. However, the drive will be in the UV trip state unless either mains or low voltage DC operation is enabled, therefore diagnostics may not be possible. (Power down save parameters are not saved when using the 24V back-up power supply input.)
- The working voltage range of the 24V power supply is as follows:

Maximum continuous operating voltage:	30.0 V
Minimum continuous operating voltage:	19.2 V
Nominal operating voltage:	24.0 V
Minimum start up voltage:	21.6 V
Maximum power supply requirement at 24V:	60 W
Recommended fuse:	3 A, 50 Vdc

Minimum and maximum voltage values include ripple and noise. Ripple and noise values must not exceed 5%.

Low voltage DC power supply 4.6

The Unidrive SP can be operated from low voltage DC supplies, nominally 24Vdc (control) and 48Vdc (power). The low voltage DC power operating mode is designed either, to allow for motor operation in an emergency back-up situation following failure of the AC supply, for example in elevators; or to limit the speed of a servo motor during commissioning of equipment, for example a robot cell.

The working voltage range of the low voltage DC power supply is as follows:

Size 1

Minimum continuous operating voltage: Minimum start up voltage: Nominal continuous operating voltage: Maximum braking IGBT turn on voltage: Maximum over voltage trip threshold:	36V 40V 48V 63.6V 69.6V
Size 2 and 3 Minimum continuous operating voltage: Minimum start up voltage: Nominal continuous operating voltage: Maximum braking IGBT turn on voltage: Maximum over voltage trip threshold:	36V 40V 48 to 72V 95.4V 104.4V
Size 4 (200V drives) Minimum continuous operating voltage: Nominal continuous operating voltage: Maximum braking IGBT turn on voltage: Maximum over voltage trip threshold:	36V 48 to 72V 95.4V 104.4V
Size 4, 5 and 6 (400V and 690V drives) Minimum continuous operating voltage: Nominal continuous operating voltage: Maximum braking IGBT turn on voltage: Maximum over voltage trip threshold:	36V 48 to 96V 127.2V 139.2V
Size 8 and 9 free standing cubicle drives	

Not applicable.

See section 4.5 Control 24Vdc supply on page 74 for 24V back-up to control.

NOTE

The nominal low voltage supply level is set by the user in Pr 6.46.

Safety Information	Product Information	Mechanical Installation	Electrical Installation	Getting Started	Basic Parameters	Running the motor	Optimisation	Smartcard operation	Onboard PLC	Advanced Parameters	Technical Data	Diagnostics	UL Listing Information
-----------------------	------------------------	----------------------------	----------------------------	--------------------	---------------------	-------------------	--------------	---------------------	----------------	------------------------	-------------------	-------------	---------------------------

The default setting is 48V for all drive sizes.

The over voltage trip threshold and braking IGBT turn on voltage are scaled from this value as follows:

Brake IGBT turn on = $1.325 \times Pr 6.46$ (V) Over voltage trip = $1.45 \times Pr 6.46$ (V)

For application data, refer to the Unidrive SP Low Voltage DC Operation Application Note.

4.7 Ratings

The input current is affected by the supply voltage and impedance.

Typical input current

The values of typical input current are given to aid calculations for power flow and power loss.

The values of typical input current are stated for a balanced supply.

Maximum continuous input current

The values of maximum continuous input current are given to aid the selection of cables and fuses. These values are stated for the worst case condition with the unusual combination of stiff supply with bad balance. The value stated for the maximum continuous input current would only be seen in one of the input phases. The current in the other two phases would be significantly lower.

The values of maximum input current are stated for a supply with a 2% negative phase-sequence imbalance and rated at the supply fault current given in Table 4-2.

Table 4-2 Supply fault current used to calculate maximum input currents

Model	Symmetrical fault level (kA)
All	100

Madal	Typical input	Maximum continuous	Fuse rating	Cable EN6	
Model	current A	input current A	IEC gG A	Input mm ²	Output mm ²
SP1201	7.1	9.5	10	1.5	1.0
SP1202	9.2	11.3	12	1.5	1.0
SP1203	12.5	16.4	20	4.0	1.0
SP1204	15.4	19.1	20	4.0	1.5
SP2201	13.4	18.1	20	4.0	2.5
SP2202	18.2	22.6	25	4.0	4.0
SP2203	24.2	28.3	32	6.0	6.0
SP3201	35.4	43.1	50	16	16
SP3202	46.8	54.3	63	25	25
SP1401	4.1	4.8	8	1.0	1.0
SP1402	5.1	5.8	8	1.0	1.0
SP1403	6.8	7.4	8	1.0	1.0
SP1404	9.3	10.6	12	1.5	1.0
SP1405	10	11	12	1.5	1.0
SP1406	12.6	13.4	16	2.5	1.5
SP2401	15.7	17	20	4.0	2.5
SP2402	20.2	21.4	25	4.0	4.0
SP2403	26.6	27.6	32	6.0	6.0
SP2404	26.6	27.6	32	6.0	6.0
SP3401	34.2	36.2	40	10	10
SP3402	40.2	42.7	50	16	16
SP3403	51.3	53.5	63	25	25
SP3501	5.0	6.7	8	1.0	1.0
SP3502	6.0	8.2	10	1.0	1.0
SP3503	7.8	11.1	12	1.5	1.0
SP3504	9.9	14.4	16	2.5	1.5
SP3505	13.8	18.1	20	4.0	2.5
SP3506	18.2	22.2	25	4.0	4.0
SP3507	22.2	26.0	32	6.0	6.0

Table 4-3 Size 1 to 3 input current, fuse and cable size ratings (European)

Safety	Product	Mechanical	Electrical	Getting	Basic	Running the	Ontinuination	Smartcard	Onboard	Advanced	Technical	Discussion	UL Listing
Information	Information	Installation	Installation	Started	Parameters	motor	Optimisation	operation	PLC	Parameters	Data	Diagnostics	Information

Table 4-4	Size 1 to 3 input cu	rrent, fuse and cable size ratings (USA)
-----------	----------------------	--

Model	Typical input	Maximum continuous	Fuse rating Class CC <30A		e size 508C
	current A	input current A	Class J >30A A	Input AWG	Output AWG
SP1201	7.1	9.5	10	14	18
SP1202	9.2	11.3	15	14	16
SP1203	12.5	16.4	20	12	14
SP1204	15.4	19.1	20	12	14
SP2201	13.4	18.1	20	12	14
SP2202	18.2	22.6	25	10	10
SP2203	24.2	28.3	30	8	8
SP3201	35.4	43.1	45	6	6
SP3202	46.8	54.3	60	4	4
SP1401	4.1	4.8	8	16	22
SP1402	5.1	5.8	8	16	20
SP1403	6.8	7.4	10	16	18
SP1404	9.3	10.6	15	14	16
SP1405	10	11	15	14	14
SP1406	12.6	13.4	15	14	14
SP2401	15.7	17	20	12	14
SP2402	20.2	21.4	25	10	10
SP2403	26.6	27.6	30	8	8
SP2404	26.6	27.6	30	8	8
SP3401	34.2	36.2	40	6	6
SP3402	40.2	42.7	45	6	6
SP3403	51.3	53.5	60	4	4
SP3501	5.0	6.7	10	16	18
SP3502	6.0	8.2	10	16	16
SP3503	7.8	11.1	15	14	14
SP3504	9.9	14.4	15	14	14
SP3505	13.8	18.1	20	12	14
SP3506	18.2	22.2	25	10	10
SP3507	22.2	26.0	30	8	8

Safety	Product	Mechanical		Getting	Basic	Running the	Optimisation	Smartcard	Onboard	Advanced	Technical	Diagnostics	UL Listing
Information	Information	Installation	Installation	Started	Parameters	motor		operation	PLC	Parameters	Data		Information

Typical input Maxin			Fuse o	option 1	Fuse o semiconductor with HRC fus	r fuse in series	Cable size				
Model	current	input current	IEC class gR	North America: Ferraz HSJ	HRC IEC class gG UL class J	Semi- conductor IEC class aR	Inj	put	Ou	tput	
	Α	Α	Α	Α	Α	Α	mm ²	AWG	mm ²	AWG	
SP4201	62.1	68.9	100	90	90	160	25	3	25	3	
SP4202	72.1	78.1	100	100	100	160	35	3	35	3	
SP4203	94.5	99.9	125	125	125	200	70	1	70	1	
SP4401	61.2	62.3	80	80	80	160	25	3	25	3	
SP4402	76.3	79.6	110	110	100	200	35	2	35	2	
SP4403	94.1	97.2	125	125	125	200	70	1	70	1	
SP5401	126	131	200	175	160	200	95	2/0	95	2/0	
SP5402	152	156	250	225	200	250	120	4/0	120	4/0	
SP6401	206	215	250	250	250	315	2 x 70	2 x 2/0	2 x 70	2 x 2/0	
SP6402	247	258	315	300	300	350	2 x 120	2 x 4/0	2 x 120	2 x 4/0	
SP8411	377	418			500	400	2 x 120	2 x 410	2 x 120	2 x 410	
SP8412	432	479			500	800	2 x 120	2 x 500	2 x 120	2 x 500	
SP8413	535	593			600	800	2 x 185	3 x 400	2 x 185	3 x 400	
SP8414	631	700			700	800	2 x 240	4 x 350	2 x 240	4 x 350	
SP4601	23	26.5	63	60	32	125	4	10	4	10	
SP4602	26.1	28.8	63	60	40	125	6	8	6	8	
SP4603	32.9	35.1	63	60	50	125	10	8	10	8	
SP4604	39	41	63	60	50	125	16	6	16	6	
SP4605	46.2	47.9	63	60	63	125	16	6	16	6	
SP4606	55.2	56.9	80	60	63	125	25	4	25	4	
SP5601	75.5	82.6	125	100	90	160	35	2	35	2	
SP5602	89.1	94.8	125	100	125	160	50	1	50	1	
SP6601	128	139	160	175	150	315	2 x 50	2 x 1	2 x 50	2 x 1	
SP6602	144	155	160	175	160	315	2 x 50	2 x 1	2 x 50	2 x 1	

The Semiconductor IEC class aR fuses for size 8 and 9 drives must be fitted within the cubicle, see Figure 3-20 on page 36. These parts may be bought from EPA, see Table 4-6.

Table 4-6 Size 8 and 9 fuses

Fuse IEC aR	Part No.
800A	4300-0800
400A	4300-0400

Installation class (ref: IEC60364-5-52:2001)

- B1 Separate cables in conduit.
- B2 Multicore cable in conduit
- C Multicore cable in free air.

NOTE

Cable sizes are from IEC60364-5-52:2001 table A.52.C with correction factor for 40°C ambient of 0.87 (from table A52.14) for cable installation method B2 (multicore cable in conduit).

Cable size may be reduced if a different installation method is used, or if the ambient temperature is lower.

The recommended cable sizes above are only a guide. The mounting and grouping of cables affects their current-carrying capacity, in some cases smaller cables may be acceptable but in other cases a larger cable is required to avoid excessive temperature or voltage drop. Refer to local wiring regulations for the correct size of cables.

NOTE

The recommended output cable sizes assume that the motor maximum current matches that of the drive. Where a motor of reduced rating is used the cable rating may be chosen to match that of the motor. To ensure that the motor and cable are protected against overload, the drive must be programmed with the correct motor rated current.

NOTE

UL listing is dependent on the use of the correct type of UL-listed fuse, and applies when symmetrical short-circuit current does not exceed 5kA for sizes 1 to 3. See Chapter 14 UL Listing Information on page 292 for sizing information.

Fuses

The AC supply to the drive must be fitted with suitable protection against overload and short-circuits. Table 4-3, Table 4-4 and Table 4-5 show recommended fuse ratings. WARNING Failure to observe this requirement will cause risk of fire.

A fuse or other protection must be included in all live connections to the AC supply.

An MCB (miniature circuit breaker) or MCCB (moulded-case circuitbreaker) with type C may be used in place of fuses on Unidrive SP sizes 1 to 3 under the following conditions:

- The fault-clearing capacity must be sufficient for the installation
- For frame sizes 2 and 3, the drive must be mounted in an enclosure which meets the requirements for a fire enclosure

See Chapter 14 UL Listing Information for UL listing requirements.

Safety Product Mechanical Electrical Getting Basic Running the motor Optimisati Information Installation Installation Started Parameters Motor Optimisati	on Smartcard Onboard Advanced Technical Diagnostics UL Listing Information
--	--

Fuse types

The fuse voltage rating must be suitable for the drive supply voltage.

Ground connections

The drive must be connected to the system ground of the AC supply. The ground wiring must conform to local regulations and codes of practice.

4.7.1 Main AC supply contactor

The recommended AC supply contactor type for sizes 1 to 6 is AC1.

4.8 Output circuit and motor protection

The output circuit has fast-acting electronic short-circuit protection which limits the fault current to typically no more than five times the rated output current, and interrupts the current in approximately 20µs. No additional short-circuit protection devices are required.

The drive provides overload protection for the motor and its cable. For this to be effective, Pr **0.46** *Motor rated current* must be set to suit the motor.

Pr **0.46** *Motor rated current* must be set correctly to avoid a risk of fire in the event of motor overload.

There is also provision for the use of a motor thermistor to prevent overheating of the motor, e.g. due to loss of cooling.

4.8.1 Cable types and lengths

Since capacitance in the motor cable causes loading on the output of the drive, ensure the cable length does not exceed the values given in Table 4-7, Table 4-8 and Table 4-9.

Use $105^{\circ}C$ (221°F) (UL 60/75°C temp rise) PVC-insulated cable with copper conductors having a suitable voltage rating, for the following power connections:

- AC supply to external EMC filter (when used)
- AC supply (or external EMC filter) to drive
- Drive to motor
- Drive to braking resistor

Table 4-7 Maximum motor cable lengths (200V drives)

	200V Nominal AC supply voltage											
Model	Maximu	•		otor cable length for eac g frequencies								
	3kHz	4kHz	6kHz	8kHz	12kHz	16kHz						
SP1201		65m ((210ft)									
SP1202	1	00m (330	ft)									
SP1203	130m	(425ft)				37m						
SP1204			100m (330ft)	75m (245ft)	50m	(120ft)						
SP2201					(165ft)	(12011)						
SP2202	200m	150m										
SP2203	(660ft)	(490ft)										
SP3201												
SP3202												
SP4201	050-	405	405	00								
SP4202	250m (820ft)	185m (607ft)	125m (410ft)	90m (295ft)								
SP4203	(02011)	(00/11)	(+1011)	(20011)								

Table 4-8 Maximum motor cable lengths (400V drives)

	400	V Nomina	I AC supp	oly voltag	е						
Model	Maximum permissible motor cable length for each of the following frequencies										
	3kHz	4kHz	6kHz	8kHz	12kHz	16kHz					
SP1401			210ft)								
SP1402	1	00m (330f	it)								
SP1403	130m	(425ft)									
SP1404											
SP1405											
SP1406			75m		50 m	37m					
SP2401			100	75m	50m (165ft)	(120ft)					
SP2402	200m	150m	100m (330ft)	(245ft)	(10011)						
SP2403	(660ft)	(490ft)	(55011)								
SP2404											
SP3401											
SP3402	4										
SP3403											
SP4401											
SP4402											
SP4403		105	125m (410ft)	90m (295ft)							
SP5401	250m (820ft)	185m (607ft)		(29511)							
SP5402	(02011)	(60711)	(41011)								
SP6401											
SP6402											
SP8411											
SP8412											
SP8413											
SP8414											
SP9411	500m	370m	250m								
SP9412	(1640ft)	(1214ft)	(820ft)								
SP9413	t										
SP9414											
SP9415	t										

Table 4-9 Maximum motor cable lengths (575V drives)

	575	V Nomina	l AC supp	oly voltag	е					
Model	Maximu	laximum permissible motor cable length for each the following frequencies								
	3kHz	4kHz	6kHz	8kHz	12kHz	16kHz				
SP3501										
SP3502	Ť									
SP3503	200m (660ft)	150m (490ft)	100m (330ft)	75m (245ft)						
SP3504										
SP3505	(00011)	(43011)	(55011)	(24011)						
SP3506										
SP3507	1									

Safety	Product	Mechanical	Electrical	Getting	Basic	Running the	Ontinuination	Smartcard	Onboard	Advanced	Technical	Diamanting	UL Listing
Information	Information	Installation	Installation	Started	Parameters	motor	Optimisation	operation	PLC	Parameters	Data	Diagnostics	Information

Table 4-10 Maximum motor cable lengths (690V drives)

690V Nominal AC supply voltage										
Model	Maximu	each of								
	3kHz	4kHz	6kHz	8kHz	12kHz	16kHz				
SP4601										
SP4602										
SP4603	-			90m						
SP4604										
SP4605	250m	185m	125m	(295ft)						
SP4606	(820ft)	(607ft)	(410ft)							
SP5601										
SP5602										
SP6601										
SP6602										

- Cable lengths in excess of the specified values may be used only when special techniques are adopted; refer to the supplier of the drive.
- The default switching frequency is 3kHz for open-loop and closedloop vector and 6kHz for servo.

High-capacitance cables

The maximum cable length is reduced from that shown in Table 4-7, Table 4-8, Table 4-9 and Table 4-10 if high capacitance motor cables are used.

Most cables have an insulating jacket between the cores and the armour or shield; these cables have a low capacitance and are recommended. Cables that do not have an insulating jacket tend to have high capacitance; if a cable of this type is used, the maximum cable length is half that quoted in the tables. (Figure 4-15 shows how to identify the two types.)

Figure 4-15 Cable construction influencing the capacitance

Normal capacitance Shield or armour separated from the cores

High capacitance Shield or armour close to the cores

The cable used for Table 4-7, Table 4-8, Table 4-9 and Table 4-10 is shielded and contains four cores. Typical capacitance for this type of cable is 130pF/m (i.e. from one core to all others and the shield connected together).

4.8.2 Motor winding voltage

The PWM output voltage can adversely affect the inter-turn insulation in the motor. This is because of the high rate of change of voltage, in conjunction with the impedance of the motor cable and the distributed nature of the motor winding.

For normal operation with AC supplies up to 500Vac and a standard motor with a good quality insulation system, there is no need for any special precautions. In case of doubt the motor supplier should be consulted.

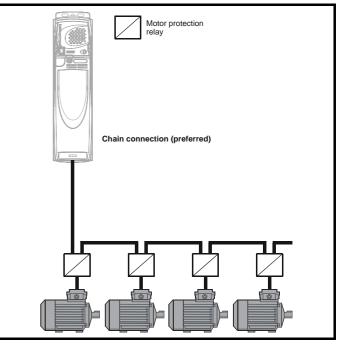
Special precautions are recommended under the following conditions, but only if the motor cable length exceeds 10m:

- AC supply voltage exceeds 500V
- DC supply voltage exceeds 670V
- Operation of 400V drive with continuous or very frequent sustained braking
- Multiple motors connected to a single drive

For multiple motors, the precautions given in section 4.8.3 *Multiple motors* should be followed.

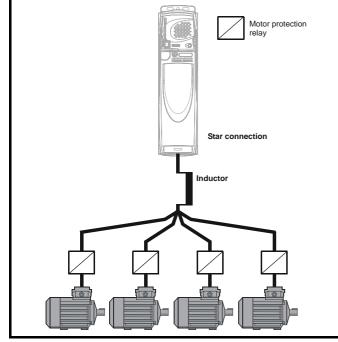
For the other cases listed, it is recommended that an inverter-rated motor be used. This has a reinforced insulation system intended by the manufacturer for repetitive fast-rising pulsed voltage operation.

Users of 575V NEMA rated motors should note that the specification for inverter-rated motors given in NEMA MG1 section 31 is sufficient for motoring operation but not where the motor spends significant periods braking. In that case an insulation peak voltage rating of 2.2kV is recommended.


If it is not practical to use an inverter-rated motor, an output choke (inductor) should be used. The recommended type is a simple iron-cored component with a reactance of about 2%. The exact value is not critical. This operates in conjunction with the capacitance of the motor cable to increase the rise-time of the motor terminal voltage and prevent excessive electrical stress.

4.8.3 Multiple motors

Open-loop only


If the drive is to control more than one motor, one of the fixed V/F modes should be selected (Pr 5.14 = Fd or SrE). Make the motor connections as shown in Figure 4-16 and Figure 4-17. The maximum cable lengths in Table 4-7, Table 4-8, Table 4-9 and Table 4-10 apply to the sum of the total cable lengths from the drive to each motor.

It is recommended that each motor is connected through a protection relay since the drive cannot protect each motor individually. For star connection, a sinusoidal filter or an output inductor must be connected as shown in Figure 4-17, even when the cable lengths are less than the maximum permissible. For details of inductor sizes refer to the supplier of the drive. **Figure 4-16 Preferred chain connection for multiple motors**

Safety	Product	Mechanical	Electrical	Getting	Basic	Running the		Smartcard	Onboard	Advanced	Technical		UL Listing
Information	Information		Installation	Started	Parameters	motor	Optimisation	operation	PLC	Parameters	Data	Diagnostics	Information

Figure 4-17 Alternative connection for multiple motors

4.8.4 Star / delta motor operation

The voltage rating for star and delta connections of the motor should always be checked before attempting to run the motor.

The default setting of the motor rated voltage parameter is the same as the drive rated voltage, i.e.

400V drive 400V rated voltage 200V drive 200V rated voltage

A typical 3 phase motor would be connected in star for 400V operation or delta for 200V operation, however, variations on this are common e.g. star 690V delta 400V

Incorrect connection of the windings will cause severe under or over fluxing of the motor, leading to a very poor output torque or motor saturation and overheating respectively.

4.8.5 Output contactor

If the cable between the drive and the motor is to be interrupted by a contactor or circuit breaker, ensure that the drive is disabled before the contactor or circuit breaker is opened or closed. Severe arcing may occur if this circuit is interrupted with the motor running at high current and low speed.

A contactor is sometimes required to be fitted between the drive and motor for safety purposes.

The recommended motor contactor is the AC3 type.

Switching of an output contactor should only occur when the output of the drive is disabled.

Opening or closing of the contactor with the drive enabled will lead to:

- 1. OI.AC trips (which cannot be reset for 10 seconds)
- 2. High levels of radio frequency noise emission
- 3. Increased contactor wear and tear

The Drive Enable terminal (T31) when opened provides a SECURE DISABLE function. This can in many cases replace output contactors.

For further information see section 4.16 SECURE DISABLE on page 100.

4.9 Braking

Braking occurs when the drive is decelerating the motor, or is preventing the motor from gaining speed due to mechanical influences. During braking, energy is returned to the drive from the motor.

When the motor is being braked by the drive, the maximum regenerated power that the drive can absorb is equal to the power dissipation (losses) of the drive.

When the regenerated power is likely to exceed these losses, the DC bus voltage of the drive increases. Under default conditions, the drive brakes the motor under PI control, which extends the deceleration time as necessary in order to prevent the DC bus voltage from rising above a user defined set-point.

If the drive is expected to rapidly decelerate a load, or to hold back an overhauling load, a braking resistor must be fitted. Note size 8 and 9 drives cannot operate a braking resistor.

Table 4-11 shows the DC voltage level at which the drive turns on the braking transistor.

Table 4-11 Braking transistor turn on voltage

Drive voltage rating	DC bus voltage level
200V	390V
400V	780V
575V	930V
690V	1120V

NOTE

When a braking resistor is used, Pr **0.15** should be set to FASt ramp mode.

High temperatures

Braking resistors can reach high temperatures. Locate braking resistors so that damage cannot result. Use cable having insulation capable of withstanding high temperatures.

4.9.1 Heatsink mounted braking resistor

A resistor has been especially designed to be mounted within the heatsink of the Unidrive SP (sizes 1 and 2). See section 3.13 *Heatsink mounted braking resistor* on page 60 for mounting details. The design of the resistor is such that no thermal protection circuit is required, as the device will fail safely under fault conditions. On Unidrive SP sizes 1 and 2, the in built software overload protection is set up at default for the designated heatsink mounted resistor. Table 4-12 provides the resistor data for each drive rating.

NOTE

The heatsink mounted resistor is suitable for applications with a low level of regen energy only. See power rating below.

Uptimisation	Safety Information	Product Information	Mechanical Installation	Electrical Installation	Getting Started	_	motor	Optimisation	Smartcard operation	PLC	Advanced Parameters		Diagnostics	UL Listing Information
--------------	-----------------------	------------------------	----------------------------	----------------------------	--------------------	---	-------	--------------	---------------------	-----	------------------------	--	-------------	---------------------------

Braking resistor overload protection parameter settings

Failure to observe the following information may damage the resistor.

The Unidrive SP software contains an overload protection function for a braking resistor. On Unidrive SP size 1 and 2 this function is enabled at default to protect the heatsink mounted resistor. Below are the parameter settings.

			0
Paramet	er	200V drive	400V drive
Full power braking time	Pr 10.30	0.09	0.02
Full power braking period	Pr 10.31	2	.0

For more information on the braking resistor software overload protection, see Pr **10.30** and Pr **10.31** full descriptions in the *Unidrive SP Advanced User Guide*.

If the heatsink mounted braking resistor is to be used at more than half of its average power rating then the drive's cooling fan must be at full speed controlled by setting Pr **6.45** to On (1).

Table 4-12 Heatsink mounted braking resistor data

Parameter	Size 1	Size 2		
Part number	1220-2756-01	1220-2758-01		
DC resistance at 25°C	75Ω	37.5Ω		
Peak instantaneous power over 1ms at nominal resistance	8kW	16kW		
Average power over 60s *	50W	100W		
Ingress Protection (IP) rating	IP	54		
Maximum altitude	2000m			

* To keep the temperature of the resistor below 70°C ($158^{\circ}F$) in a 30°C ($86^{\circ}F$) ambient, the average power rating is 50W for size 1 and 100W for size 2. The above parameter settings ensure this is the case.

Unidrive SP size 3 and larger do not have heatsink mounted braking resistors, hence the default values of Pr **10.30** and Pr **10.31** are 0 (i.e. software braking resistor overload protection disabled).

4.9.2 External braking resistor

CAUTION

Overload protection

When an external braking resistor is used, it is essential that an overload protection device is incorporated in the braking resistor circuit; this is described in Figure 4-18 on page 82.

When a braking resistor is to be mounted outside the enclosure, ensure that it is mounted in a ventilated metal housing that will perform the following functions:

- Prevent inadvertent contact with the resistor
- · Allow adequate ventilation for the resistor

When compliance with EMC emission standards is required, external connection requires the cable to be armoured or shielded, since it is not fully contained in a metal enclosure. See section 4.11.5 *Compliance with generic emission standards* on page 88 for further details.

Internal connection does not require the cable to be armoured or shielded.

Minimum resistances and power ratings

Table 4-13 Minimum resistance values and peak power rating for the braking resistor at 40°C (104°F)

	Minim	Average power		
Model	Minimum resistance* Ω	Instantaneous power rating kW	Average power for 60s kW	
SP1201			1.5	
SP1202	43	3.5	2.2	
SP1203			3.0	
SP1204	29	5.3	4.4	
SP2201			6.0	
SP2202	18	8.9	8.0	
SP2203			8.9	
SP3201			13.1	
SP3202	5.0	30.3	19.3	
SP4201**			22.5	
SP4202**	5.0	30.3	27.8	
SP4203**			30.3	
SP1401			1.5	
SP1402	1		2.2	
SP1403	74	8.3	3.0	
SP1404	1		4.4	
SP1405			6.0	
SP1406	58	10.6	8.0	
SP2401			9.6	
SP2401 SP2402			13.1	
SP2402	19	33.1	19.3	
SP2403			22.5	
SP3404			22.5	
SP3401 SP3402	18	35.5	27.8	
SP3402 SP3403	10	55.5	33.0	
SP3403 SP4401**			45.0	
SP4401 SP4402**	11	55.3	53.0	
SP4402 SP4403**	0	67.6	67.5	
SP4403 SP5401**	9	07.0		
SP5401 SP5402**	7	86.9	82.5	
			86.9	
SP6401	5	121.7	90	
SP6402			110	
SP3501	4		4.4	
SP3502	4		6.0	
SP3503	40	50.7	8.0	
SP3504	18	50.7	9.6	
SP3505			13.1	
SP3506			19.3	
SP3507			22.5	
SP4601**	ļ		19.3	
SP4602**	ļ		22.5	
SP4603**	13	95.0	27.8	
SP4604**			33.0	
SP4605**	ļ		45.0	
SP4606**			55.5	
SP5601**	10	125.4	67.5	
SP5602**		120.4	82.5	
SP6601				
SP6602				

* Resistor tolerance: ±10%

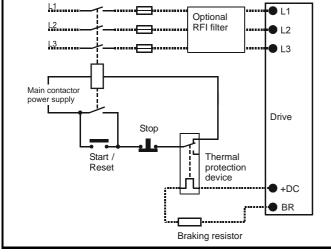
** The minimum resistance value specified is for a stand-alone drive only. If the drive is part of a common DC bus system a different value must be used. Contact the supplier of the drive for more information.

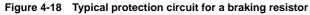
For high-inertia loads or under continuous braking, the *continuous power* dissipated in the braking resistor may be as high as the power rating of

Diagnostics	Safety Information		Mechanical Installation		Getting Started	_	Running the motor	Optimisation	Smartcard operation	Onboard PLC	Advanced Parameters		Diagnostics	j
-------------	-----------------------	--	----------------------------	--	--------------------	---	-------------------	--------------	---------------------	----------------	------------------------	--	-------------	---

the drive. The total *energy* dissipated in the braking resistor is dependent on the amount of energy to be extracted from the load.

The instantaneous power rating refers to the short-term maximum power dissipated during the *on* intervals of the pulse width modulated braking control cycle. The braking resistor must be able to withstand this dissipation for short intervals (milliseconds). Higher resistance values require proportionately lower instantaneous power ratings.


In most applications, braking occurs only occasionally. This allows the continuous power rating of the braking resistor to be much lower than the power rating of the drive. It is essential, though, that the instantaneous power rating and energy rating of the braking resistor are sufficient for the most extreme braking duty that is likely to be encountered.


Optimisation of the braking resistor requires a careful consideration of the braking duty.

Select a value of resistance for the braking resistor that is not less than the specified minimum resistance. Larger resistance values may give a cost saving, as well as a safety benefit in the event of a fault in the braking system. Braking capability will then be reduced, which could cause the drive to trip during braking if the value chosen is too large.

Thermal protection circuit for the braking resistor

The thermal protection circuit must disconnect the AC supply from the drive if the resistor becomes overloaded due to a fault. Figure 4-18 shows a typical circuit arrangement.

See Figure 4-1 on page 66, Figure 4-2 and Figure 4-3 on page 67, and Figure 4-4 on page 68 for the location of the +DC and braking resistor connections.

4.9.3 Braking resistor software overload protection

The Unidrive SP software contains an overload protection function for a braking resistor. In order to enable and set-up this function, it is necessary to enter two values into the drive:

- Resistor short-time overload time (Pr 10.30)
- Resistor minimum time between repeated short-time overloads (Pr 10.31)

This data should be obtained from the manufacturer of the braking resistors.

Pr **10.39** gives an indication of braking resistor temperature based on a simple thermal model. Zero indicates the resistor is close to ambient and 100% is the maximum temperature the resistor can withstand. An OVLd alarm is given if this parameter is above 75% and the braking IGBT is active. An It.br trip will occur if Pr **10.39** reaches 100%, when Pr **10.37** is set to 0 (default value) or 1.

If Pr **10.37** is equal to 2 or 3 an It.br trip will not occur when Pr **10.39** reaches 100%, but instead the braking IGBT will be disabled until Pr **10.39** falls below 95%. This option is intended for applications with

parallel connected DC buses where there are several braking resistors, each of which cannot withstand full DC bus voltage continuously. With this type of application it is unlikely the braking energy will be shared equally between the resistors because of voltage measurement tolerances within the individual drives. Therefore with Pr **10.37** set to 2 or 3, then as soon as a resistor has reached its maximum temperature the drive will disable the braking IGBT, and another resistor on another drive will take up the braking energy. Once Pr **10.39** has fallen below 95% the drive will allow the braking IGBT to operate again.

See the Unidrive SP Advanced User Guide for more information on Pr 10.30, Pr 10.31, Pr 10.37 and Pr 10.39.

This software overload protection should be used in addition to an external overload protection device.

4.10 Ground leakage

The ground leakage current depends upon whether the internal EMC filter is fitted. The drive is supplied with the filter fitted. Instructions for removing the internal filter are given in Figure 4-24 *Removal of internal EMC filter (size 1 to 3)* and Figure 4-25 *Removal of internal EMC filter (size 4 to 6)* on page 84.

With internal filter fitted:

28mA AC at 400V 50Hz (proportional to supply voltage and frequency)

30µA DC (10MΩ)

With internal filter removed:

<1mA

Note that in both cases there is an internal voltage surge protection device connected to ground. Under normal circumstances this carries negligible current.

When the internal filter is fitted the leakage current is high. In this case a permanent fixed ground connection must be provided, or other suitable measures taken to prevent a safety hazard occurring if the connection is lost.

4.10.1 Use of residual current device (RCD)

There are three common types of ELCB / RCD:

- 1. AC detects AC fault currents
- 2. A detects AC and pulsating DC fault currents (provided the DC current reaches zero at least once every half cycle)
- 3. B detects AC, pulsating DC and smooth DC fault currents
 - Type AC should never be used with drives.
 - Type A can only be used with single phase drives
 - Type B must be used with three phase drives

Only type B ELCB / RCD are suitable for use with 3 phase inverter drives.

If an external EMC filter is used, a delay of at least 50ms should be incorporated to ensure spurious trips are not seen. The leakage current is likely to exceed the trip level if all of the phases are not energised simultaneously.

4.11 EMC (Electromagnetic compatibility)

The requirements for EMC are divided into three levels in the following three sections:

Section 4.11.3, General requirements for all applications, to ensure reliable operation of the drive and minimise the risk of disturbing nearby equipment. The immunity standards specified in section 11 will be met, but no specific emission standards. Note also the special requirements given in *Surge immunity of control circuits - long cables and connections outside a building* on page 90 for increased surge immunity of control circuits where control wiring is extended.

Section 4.11.4, Requirements for meeting the EMC standard for power drive systems, IEC61800-3 (EN61800-3).

Safety Product Mechanical Electrical Getting Basic Running the motor Optimisati Information Installation Installation Started Parameters Motor Optimisati	on Smartcard operation PLC Advanced Data Diagnostics UL Listing Information
--	---

Section 4.11.5, Requirements for meeting the generic emission

standards for the industrial environment, IEC61000-6-4, EN61000-6-4, EN50081-2.

The recommendations of section 4.11.3 will usually be sufficient to avoid causing disturbance to adjacent equipment of industrial quality. If particularly sensitive equipment is to be used nearby, or in a nonindustrial environment, then the recommendations of section 4.11.4 or section 4.11.5 should be followed to give reduced radio-frequency emission.

In order to ensure the installation meets the various emission standards described in:

- The EMC data sheet available from the supplier of the drive
- The Declaration of Conformity at the front of this manual
- Chapter 12 Technical Data on page 257

...the correct external EMC filter must be used and all of the guidelines in section 4.11.3 General requirements for EMC and section

4.11.5 Compliance with generic emission standards must be followed.

Table 4-14 Unidrive SP and EMC filter cross reference

Drive	type1	type2
Dilve	part no.	part no.
SP1201 to SP1202	4200-6118	4200-6121
SP1203 to SP1204	4200-6119	4200-6120
SP2201 to SP2203	4200-6210	4200-6211
SP3201 to SP3202	4200-6307	4200-6306
SP4201 to SP4203	4200-6406	4200-6405
SP1401 to SP1404	4200-6118	4200-6121
SP1405 to SP1406	4200-6119	4200-6120
SP2401 to SP2404	4200-6210	4200-6211
SP3401 to SP3403	4200-6305	4200-6306
SP4401 to SP4403	4200-6406	4200-6405
SP5401 to SP5402	4200-6503	4200-6501
SP6401 to SP6402	4200-6603	4200-6601
SP3501 to SP3507	4200-6309	4200-6308
SP4601 to SP4606	4200-6408	4200-6407
SP5601 to SP5602	4200-6504	4200-6502
SP6601 to SP6602	4200-6604	4200-6602

High ground leakage current

When an EMC filter is used, a permanent fixed ground connection must be provided which does not pass through a connector or flexible power cord. This includes the internal WARNING EMC filter.

NOTE

The installer of the drive is responsible for ensuring compliance with the EMC regulations that apply where the drive is to be used.

Grounding hardware 4.11.1

The Unidrive SP is supplied with a grounding bracket, and sizes 1 to 3 with a grounding clamp, to facilitate EMC compliance. They provide a convenient method for direct grounding of cable shields without the use of "pig-tails". Cable shields can be bared and clamped to the grounding

bracket using metal clips or clamps¹ (not supplied) or cable ties. Note that the shield must in all cases be continued through the clamp to the intended terminal on the drive, in accordance with the connection details for the specific signal.

¹ A suitable clamp is the Phoenix DIN rail mounted SK14 cable clamp (for cables with a maximum outer diameter of 14mm).

See Figure 4-19 and Figure 4-20 for details on fitting the grounding clamp.

See Figure 4-21 for details on fitting the grounding bracket.

Figure 4-19 Fitting of grounding clamp (size 1 and 2)

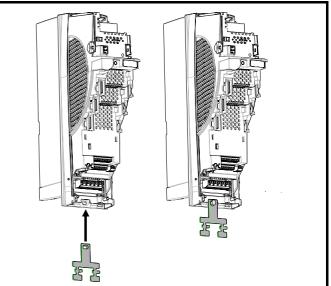
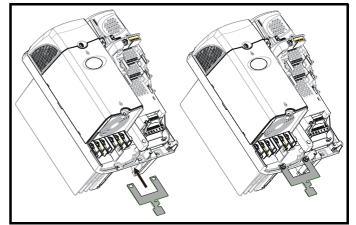
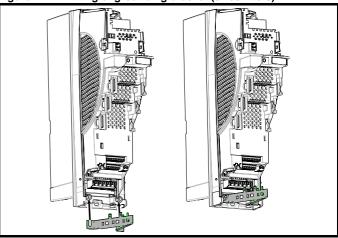
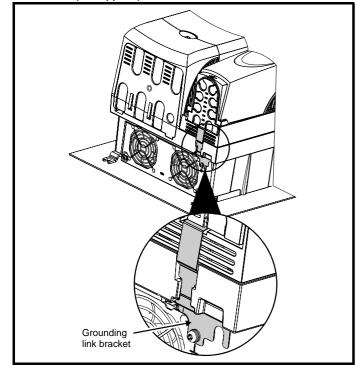
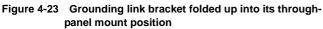
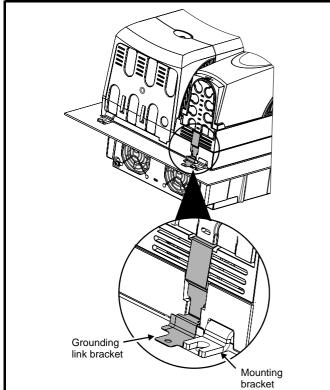




Figure 4-20 Fitting of grounding clamp (size 3)

Loosen the ground connection nuts and slide the grounding bracket in the direction shown. Once in place, re-tighten the ground connection nuts.


On Unidrive SP size 1 and 2, the grounding bracket is secured using the power ground terminal of the drive. Ensure that the supply ground connection is secure after fitting / removing the grounding bracket. Failure to do so will result in the drive not being grounded.


Safety Information	Product Information	Mechanical Installation	Electrical Installation	Getting Started	Basic Parameters	Running the motor	Optimisation	Smartcard operation	Onboard PLC	Advanced Parameters	Technical Data	Diagnostics	UL Listing Information
-----------------------	------------------------	----------------------------	----------------------------	--------------------	---------------------	-------------------	--------------	---------------------	----------------	------------------------	-------------------	-------------	---------------------------


A faston tab is located on the grounding bracket for the purpose of connecting the drive 0V to ground should the user require to do so.

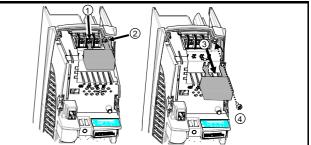
When a Unidrive SP size 4 or 5 is through-panel mounted, the grounding link bracket must be folded upwards. A screw can be used to secure the bracket or it can be located under the mounting bracket to ensure that a ground connection is made. This is required to provide a grounding point for the grounding bracket as shown in Figure 4-21.

Figure 4-22 Grounding link bracket in its surface mount position (as supplied)

4.11.2 Internal EMC filter

It is recommended that the internal EMC filter be kept in place unless there is a specific reason for removing it.

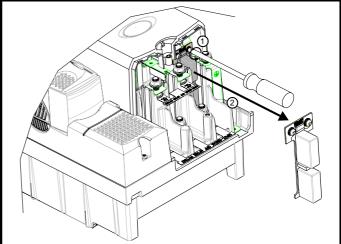
For frame sizes 3 and above, when the Unidrive SP is used with ungrounded (IT) supplies the internal EMC filter must be removed unless additional motor ground fault protection is fitted or, in the case of size 3 only, the external filter is also used.


For instructions on removal, refer to Figure 4-24 and Figure 4-25.

For details of ground fault protection contact the supplier of the drive.

If the drive is used as part of a regen system, then the internal EMC filter must be removed.

The internal EMC filter reduces radio-frequency emission into the mains supply. Where the motor cable is short, it permits the requirements of EN61800-3 to be met for the second environment - see section 4.11.4 *Compliance with EN 61800-3 (standard for Power Drive Systems)* on page 87 and section 12.1.23 *Electromagnetic compatibility (EMC)* on page 270. For longer motor cables the filter continues to provide a useful reduction in emission level, and when used with any length of shielded motor cable up to the limit for the drive, it is unlikely that nearby industrial equipment will be disturbed. It is recommended that the filter be used in all applications unless the instructions given above require it to be removed or the ground leakage current of 28mA is unacceptable. See Figure 4-24 and Figure 4-25 for details of removing and fitting the internal EMC filter.

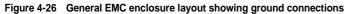

Figure 4-24 Removal of internal EMC filter (size 1 to 3)

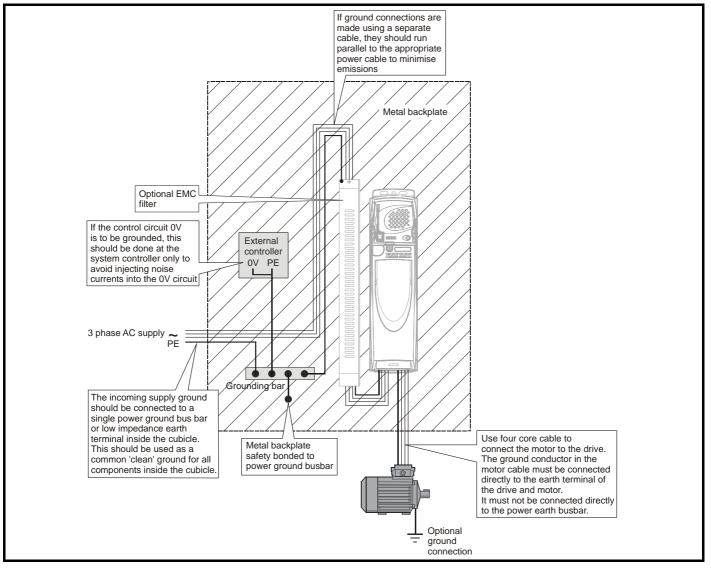
Loosen / remove screws as shown (1) and (2).

Remove filter (3), and ensure the screws are replaced and re-tightened (4).

Figure 4-25 Removal of internal EMC filter (sizes 4 to 6)

Loosen screws (1). Remove EMC filter in the direction shown (2).

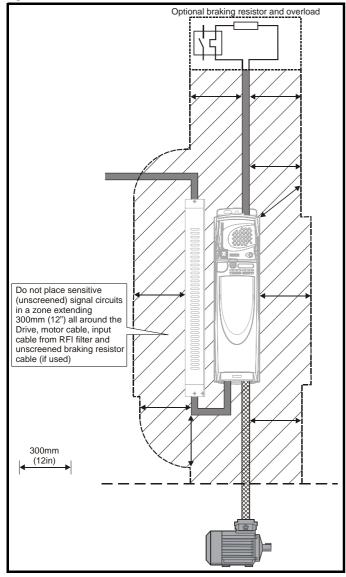

afety mation	Product Information	Mechanical Installation	Electrical Installation	Getting Started	Basic Parameters	Running the motor	Optimisation	Smartcard operation	Onboard PLC	Advanced Parameters	Technical Data	Diagnostics	UL Listing Information
-----------------	------------------------	----------------------------	----------------------------	--------------------	---------------------	-------------------	--------------	---------------------	----------------	------------------------	-------------------	-------------	---------------------------


4.11.3 General requirements for EMC

Ground (earth) connections

The grounding arrangements should be in accordance with Figure 4-26, which shows a single drive on a back-plate with or without an additional enclosure.

Figure 4-26 shows how to manage EMC when using an unshielded motor cable. However a shielded cable is preferable, in which case it should be installed as shown in section 4.11.5 *Compliance with generic emission standards* on page 88.



Safety Product Mechanical Electrical Getting Basic Running the motor Optimisat Information Installation Installation Started Parameters Motor Optimisat	ion Smartcard Onboard Advanced Technical Diagnostics UL Listing Information
--	---

Cable layout

Figure 4-27 indicates the clearances which should be observed around the drive and related 'noisy' power cables by all sensitive control signals / equipment.

Figure 4-27 Drive cable clearances

NOTE

Any signal cables which are carried inside the motor cable (i.e. motor thermistor, motor brake) will pick up large pulse currents via the cable capacitance. The screen of these signal cables must be connected to ground close to the motor cable, to avoid this noise current spreading through the control system.

Feedback device cable shielding

Shielding considerations are important for PWM drive installations due to the high voltages and currents present in the output (motor) circuit with a very wide frequency spectrum, typically from 0 to 20 MHz.

The following guidance is divided into two parts:

- 1. Ensuring correct transfer of data without disturbance from electrical noise originating either within the drive or from outside.
- 2. Additional measures to prevent unwanted emission of radio frequency noise. These are optional and only required where the installation is subject to specific requirements for radio frequency emission control.

To ensure correct transfer of data, observe the following: Resolver connections:

- Use a cable with an overall shield and twisted pairs for the resolver signals
- Connect the cable shield to the drive 0V connection by the shortest possible link ("pigtail")
- It is generally preferable not to connect the cable shield to the
 resolver. However in cases where there is an exceptional level of
 common-mode noise voltage present on the resolver body, it may be
 helpful to connect the shield there. If this is done then it becomes
 essential to ensure the absolute minimum length of "pigtails" at both
 shield connections, and possibly to clamp the cable shield directly to
 the resolver body and to the drive grounding bracket.
- The cable should preferably not be interrupted. If interruptions are unavoidable, ensure the absolute minimum length of "pigtail" in the shield connections at each interruption.

Encoder connections:

- Use a cable with the correct impedance
- Use a cable with individually shielded twisted pairs
- Connect the cable shields to 0V at both the drive and the encoder, using the shortest possible links ("pigtails")
- The cable should preferably not be interrupted. If interruptions are unavoidable, ensure the absolute minimum length of "pigtail" in the shield connections at each interruption. Preferably, use a connection method which provides substantial metallic clamps for the cable shield terminations.

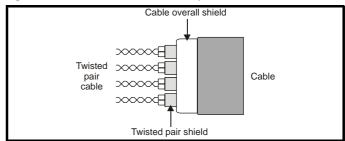
The above applies where the encoder body is isolated from the motor and where the encoder circuit is isolated from the encoder body. Where there is no isolation between the encoder circuits and the motor body, and in case of doubt, the following additional requirement must be observed. This gives the best possible noise immunity.

 The shields must be directly clamped to the encoder body (no pigtail) and to the drive grounding bracket. This may be achieved by clamping of the individual shields or by providing an additional overall shield which is clamped.

NOTE

The recommendations of the encoder manufacturer must also be adhered to for the encoder connections.

NOTE


In order to guarantee maximum noise immunity for any application double screened cable as shown should be used.

In some cases single shielding of each pair of differential signals cables, or a single overall shield with individual shield on the thermistor connections is sufficient. In these cases all the shields should be connected to ground and 0V at both ends.

If the 0V is required to be left floating a cable with individual shields and an overall shield must be used.

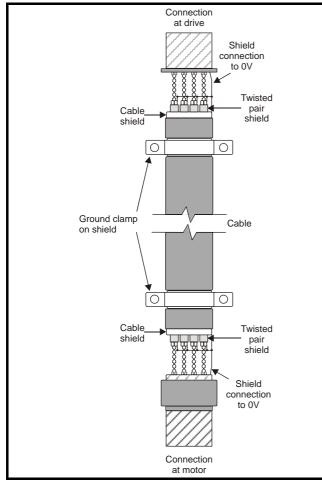

Figure 4-28 and Figure 4-29 illustrate the preferred construction of cable and the method of clamping. The outer sheath of the cable should be stripped back enough to allow the clamp to be fitted. The shield must not be broken or opened at this point. The clamps should be fitted close to the drive or feedback device, with the ground connections made to a ground plate or similar metallic ground surface.

Figure 4-28 Feedback cable, twisted pair

Safety Product Mechanical Electrical Getting Basic Running the motor Optimisat	on Smartcard Onboard PLC Parameters Data Diagnostics UL Listing Information
---	---

Figure 4-29 Feedback cable connections

To ensure suppression of radio frequency emission, observe the following:

- Use a cable with an overall shield
- Clamp the overall shield to grounded metallic surfaces at both the encoder and the drive, as illustrated in Figure 4-29

4.11.4 Compliance with EN 61800-3 (standard for Power Drive Systems)

Meeting the requirements of this standard depends on the environment that the drive is intended to operate in, as follows:

Operation in the first environment

Observe the guidelines given in section 4.11.5 *Compliance with generic emission standards* on page 88. An external EMC filter will always be required.

This is a product of the restricted distribution class according to IEC $61800\mathchar`-3$

In a domestic environment this product may cause radio interference in which case the user may be required to take adequate measures.

Operation in the second environment

In all cases a shielded motor cable must be used, and an EMC filter is required for all Unidrive SPs with a rated input current of less than 100A.

The drive contains an in-built filter for basic emission control. In some cases feeding the motor cables (U, V and W) once through a ferrite ring can maintain compliance for longer cable lengths. The requirements of operating in the second environment are met, depending on the motor cable length for 3kHz switching frequency as stated in Table 4-15.

Table 4-15 Second environment emission compliance

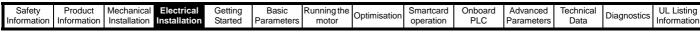
Drive	Filter	Voltage	Motor cable length (m)					
size	I IIICI	voltage	0 to 2 2 to 4		4 to 10	> 10		
	In-built	Any	Unrestricted	Jnrestricted Restricted				
1	In-built and ferrite ring	Any	Unrest	estricted Restricted				
	In-built	Any	Restricted					
2	In-built and ferrite ring	Any	Unrestricted Restricted					
	In-built	Any	Restricted					
3	In-built and ferrite ring	Any	Unrest	Unrestricted Rest		ricted		
4	In-built	Any	Restricted					
5	In-built	400	U	Unrestricted				
5	In-built	600	Unrest	ricted	Rest	ricted		
6	In-built	Any						
8	In-built	Any	U	Inrestricted		Restricted		
9	In-built	Any						

Key:

Restricted: EN 61800-3 second environment, restricted distribution (Additional measures may be required to prevent interference)

Unrestricted: EN 61800-3 second environment, unrestricted distribution

For longer motor cables, an external filter is required. Where a filter is required, follow the guidelines in section 4.11.5 *Compliance with generic emission standards*.


Where a filter is not required, follow the guidelines given in section 4.11.3 *General requirements for EMC* on page 85.

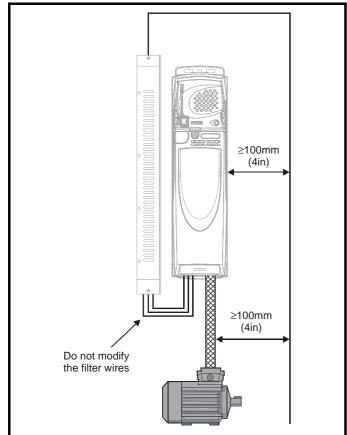
The second environment typically includes an industrial lowvoltage power supply network which does not supply buildings used for domestic purposes. Operating the drive in this environment without an external EMC filter may cause interference to nearby electronic equipment whose sensitivity has not been appreciated. The user must take remedial measures if this situation arises. If the consequences of unexpected disturbances are severe, it is recommended that the guidelines in section 4.11.5 *Compliance with generic emission standards* be adhered to.

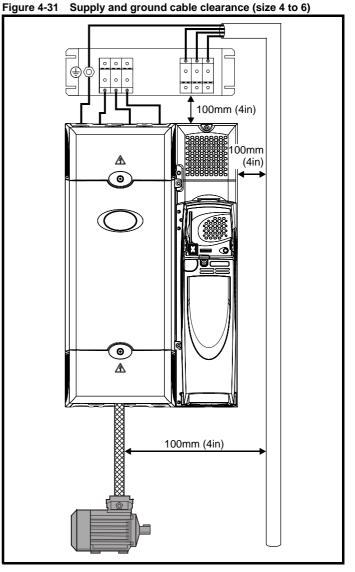
Refer to section 12.1.23 *Electromagnetic compatibility (EMC)* on page 270 for further information on compliance with EMC standards and definitions of environments.

Detailed instructions and EMC information are given in the *Unidrive SP EMC Data Sheet* which is available from the supplier of the drive.

4.11.5 Compliance with generic emission standards

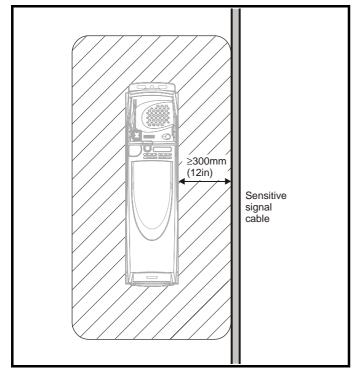
The following information applies to frame sizes 1 to 5.


Size 6 upwards does not comply with the requirements of the generic standards for radiated emission.


Size 6 complies with the requirements for conducted emission.

Sizes 8 and 9 are under consideration.

Use the recommended filter and shielded motor cable. Observe the layout rules given in Figure 4-30. Ensure the AC supply and ground cables are at least 100mm from the power module and motor cable.



Safety Product Mechanical Electrical Getting Basic Running the C Information Installation Installation Started Parameters motor C	Optimisation Smartcard operation	Onboard Advanced PLC Parameters	Technical Data	Diagnostics UL Listing Information
---	----------------------------------	------------------------------------	-------------------	---------------------------------------

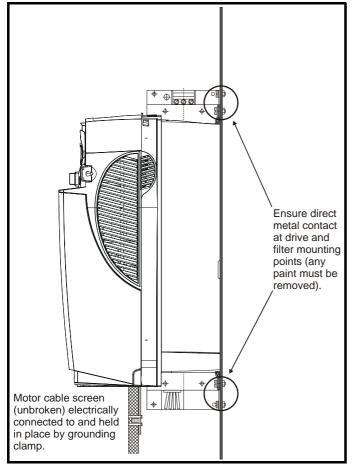
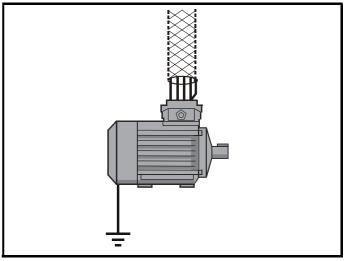

Avoid placing sensitive signal circuits in a zone 300mm (12in) all around the power module.

Figure 4-32 Sensitive signal circuit clearance

Ensure good EMC grounding.


Figure 4-33 Grounding the drive, motor cable shield and filter

Connect the shield of the motor cable to the ground terminal of the motor frame using a link that is as short as possible and not exceeding 50mm (2in) long. A full 360° termination of the shield to the terminal housing of the motor is beneficial.

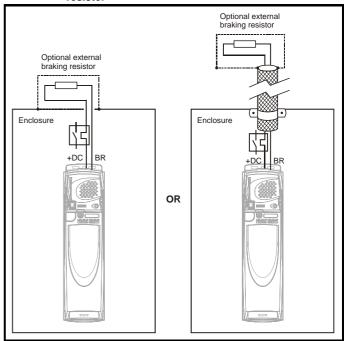
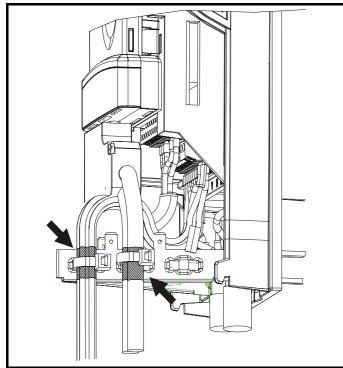

It is unimportant for EMC purposes whether the motor cable contains an internal (safety) ground core, or there is a separate external ground conductor, or grounding is through the shield alone. An internal ground core will carry a high noise current and therefore it must be terminated as close as possible to the shield termination.

Figure 4-34 Grounding the motor cable shield

Unshielded wiring to the optional braking resistor(s) may be used, provided the wiring does not run external to the enclosure. Ensure a minimum spacing of 300mm (12in) from signal wiring and the AC supply wiring to the external EMC filter. Otherwise this wiring must be shielded.

Figure 4-35 Shielding requirements of optional external braking resistor



Safety Information	Product Information	Mechanical Installation	Electrical Installation	Getting Started	Basic Parameters	Running the motor	Optimisation	Smartcard operation	Onboard PLC	Advanced Parameters	Technical Data	Diagnostics	UL Listing Information
-----------------------	------------------------	----------------------------	----------------------------	--------------------	---------------------	----------------------	--------------	---------------------	----------------	------------------------	-------------------	-------------	---------------------------

If the control wiring is to leave the enclosure, it must be shielded and the shield(s) clamped to the drive using the grounding bracket as shown in Figure 4-36. Remove the outer insulating cover of the cable to ensure the shield(s) make contact with the bracket, but keep the shield(s) intact until as close as possible to the terminals

Alternatively, wiring may be passed through a ferrite ring, part no. 3225-1004.

Figure 4-36 Grounding of signal cable shields using the grounding bracket

4.11.6 Variations in the EMC wiring Interruptions to the motor cable

The motor cable should ideally be a single length of shielded or armoured cable having no interruptions. In some situations it may be necessary to interrupt the cable, as in the following examples:

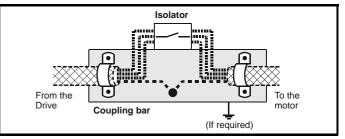
- Connecting the motor cable to a terminal block in the drive enclosure
- Fitting a motor isolator switch for safety when work is done on the motor

In these cases the following guidelines should be followed.

Terminal block in the enclosure

The motor cable shields should be bonded to the back-plate using uninsulated metal cable-clamps which should be positioned as close as possible to the terminal block. Keep the length of power conductors to a minimum and ensure that all sensitive equipment and circuits are at least 0.3m (12 in) away from the terminal block.

Figure 4-37 Connecting the motor cable to a terminal block in the enclosure


Using a motor isolator-switch

The motor cable shields should be connected by a very short conductor having a low inductance. The use of a flat metal coupling-bar is recommended; conventional wire is not suitable.

The shields should be bonded directly to the coupling-bar using uninsulated metal cable-clamps. Keep the length of the exposed power conductors to a minimum and ensure that all sensitive equipment and circuits are at least 0.3m (12 in) away.

The coupling-bar may be grounded to a known low-impedance ground nearby, for example a large metallic structure which is connected closely to the drive ground.

Figure 4-38 Connecting the motor cable to an isolator switch

Surge immunity of control circuits - long cables and connections outside a building

The input/output ports for the control circuits are designed for general use within machines and small systems without any special precautions.

These circuits meet the requirements of EN61000-6-2 (1kV surge) provided the 0V connection is not grounded.

In applications where they may be exposed to high-energy voltage surges, some special measures may be required to prevent malfunction or damage. Surges may be caused by lightning or severe power faults in association with grounding arrangements which permit high transient voltages between nominally grounded points. This is a particular risk where the circuits extend outside the protection of a building.

As a general rule, if the circuits are to pass outside the building where the drive is located, or if cable runs within a building exceed 30m, some additional precautions are advisable. One of the following techniques should be used:

- Galvanic isolation, i.e. do not connect the control 0V terminal to ground. Avoid loops in the control wiring, i.e. ensure every control wire is accompanied by its return (0V) wire.
- Shielded cable with additional power ground bonding. The cable shield may be connected to ground at both ends, but in addition the ground conductors at both ends of the cable must be bonded together by a power ground cable (equipotential bonding cable) with

Safety	Product	Mechanical	Electrical	Getting	Basic	Running the	Optimication	Smartcard	Onboard	Advanced	Technical	Diagnostics	UL Listing
Information	Information	Installation	Installation	Started	Parameters	motor	Optimisation	operation	PLC	Parameters	Data	Diagnostics	Information

cross-sectional area of at least 10mm², or 10 times the area of the signal cable shield, or to suit the electrical safety requirements of the plant. This ensures that fault or surge current passes mainly through the ground cable and not in the signal cable shield. If the building or plant has a well-designed common bonded network this precaution is not necessary.

3. Additional over-voltage suppression - for the analogue and digital inputs and outputs, a zener diode network or a commercially available surge suppressor may be connected in parallel with the input circuit as shown in Figure 4-39 and Figure 4-40.

If a digital port experiences a severe surge its protective trip may operate (O.Ld1 trip code 26). For continued operation after such an event, the trip can be reset automatically by setting Pr 10.34 to 5.

Figure 4-39 Surge suppression for digital and unipolar inputs and outputs

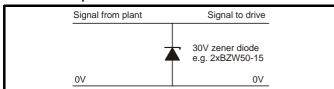
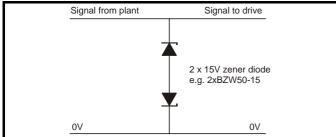



Figure 4-40 Surge suppression for analogue and bipolar inputs and outputs

Surge suppression devices are available as rail-mounting modules, e.g. from Phoenix Contact:

```
Unipolar TT-UKK5-D/24 DC
Bipolar TT-UKK5-D/24 AC
```

These devices are not suitable for encoder signals or fast digital data networks because the capacitance of the diodes adversely affects the signal. Most encoders have galvanic isolation of the signal circuit from the motor frame, in which case no precautions are required. For data networks, follow the specific recommendations for the particular network.

Serial communications connections 4.12

The Unidrive SP has a serial communications port (serial port) as standard supporting 2 wire EIA485 communications. Please see Table 4-16 for the connection details for the RJ45 connector.

Figure 4-41 Location of the RJ45 serial comms connector

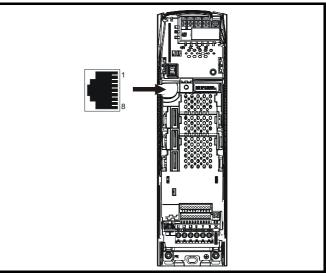


Table 4-16 Connection details for RJ45 connector

Pin	Function
1	120Ω Termination resistor
2	RX TX
3	Isolated 0V
4	+24V (100mA)
5	Isolated 0V
6	TX enable
7	RX\ TX\
8	RX\TX\ (if termination resistors are required, link to pin 1)
Shell	Isolated 0V

The communications port applies a 2 unit load to the communications network

Minimum number of connections are 2, 3, 7 and shield. Shielded cable must be used at all times.

4.12.1 Isolation of the serial communications port

The serial communications port of the Unidrive SP is double insulated and meets the requirements for SELV in EN50178.

In order to meet the requirements for SELV in IEC60950 (IT equipment) it is necessary for the control computer to be grounded. Alternatively, when a lap-top or similar device is used which has no provision for grounding, an isolation WARNING device must be incorporated in the communications lead.

An isolated serial communications lead has been designed to connect the Unidrive SP to IT equipment (such as lap-top computers), and is available from the supplier of the drive. See below for details:

Table 4-17 Isolated serial comms lead details

Part number	Description
4500-0087	Comms cable

The "isolated serial communications" lead has reinforced insulation as defined in IEC60950 for altitudes up to 3,000m.

NOTE

When using the Comms cable the available baud rate is limited to 19.2k baud.

Safety Product Mechanical Electrical Getting Basic Running the motor Optimisati Information Installation Installation Started Parameters motor Optimisati	n Smartcard operation PLC Advanced Parameters Data Diagnostics UL Listing
--	---

4.12.2 Multi-drop network

The Unidrive SP can be used on a 2 wire EIA485 multi-drop network using the drive's serial communications port when the following guidelines are adhered to.

Connections

The network should be a daisy chain arrangement and not a star, although short stubs to the drive are allowed.

The minimum connections are pins 2 (RX TX), 3 (isolated 0V), 7 (RX\ TX\) and the screen.

Pin 4 (+24V) on each drive can be connected together but there is no power sharing mechanism between drives and therefore the maximum power available is the same as a single drive. (If pin 4 is not linked to the other drives on the network and has an individual load then the maximum power can be taken from pin 4 of each drive.)

Termination resistors

If a drive is on the end of the network chain then pins 1 and 8 should be linked together. This will connect an internal 120Ω termination resistor between RXTX and RX\TX\. (If the end unit is not a drive or the user wishes to use their own termination resistor, a 120Ω termination resistor should be connected between RXTX and RX\TX\ at the end unit.)

If the host is connected to a single drive then termination resistors should not be used unless the baud rate is high.

Comms Cable

The Comms Cable can be used on a multi-drop network but should only be used occasionally for diagnostic and set up purposes. The network must also be made up entirely of Unidrive SPs.

If the Comms Cable is to be used, then pin 6 (TX enable) should be connected on all drives and pin 4 (+24V) should be linked to at least 1 drive to supply power to the converter in the cable.

Only one Comms Cable can be used on a network.

4.13 Control connections

4.13.1 General

Function	Qty	Control parameters available	Terminal number
Differential analogue input	1	Destination, offset, offset trim, invert, scaling	5,6
Single ended analogue input	2	Mode, offset, scaling, invert, destination	7,8
Analogue output	2	Source, mode, scaling,	9,10
Digital input	3	Destination, invert, logic select	27,28,29
Digital input / output	3	Input / output mode select, destination / source, invert, logic select	24,25,26
Relay	1	Source, invert	41,42
Drive enable (Secure Disable)	1		31
+10V User output	1		4
+24V User output	1	Source, invert	22
0V common	6		1, 3, 11, 21, 23, 30
+24V External input	1		2

Table 4-18 The Unidrive SP control connections consist of:

Key:

Destination
parameter:indicates the parameter which is being controlled by the
terminal / functionSource
parameter:indicates the parameter being output by the terminal
analogue - indicates the mode of operation of the
terminal, i.e. voltage 0-10V, current 4-20mA etc.
digital - indicates the mode of operation of the terminal,
i.e. positive / negative logic (the Drive Enable terminal is
fixed in positive logic), open collector.

All analogue terminal functions can be programmed in menu 7.

All digital terminal functions (including the relay) can be programmed in menu 8.

The setting of Pr **1.14** and Pr **6.04** can cause the function of digital inputs T25 to T29 to change. For more information, please refer to section 11.21.1 *Reference modes* on page 248 and section 11.21.7 *Start / stop logic modes* on page 253.

The control circuits are isolated from the power circuits in the drive by basic insulation (single insulation) only. The installer must ensure that the external control circuits are insulated from human contact by at least one layer of insulation (supplementary insulation) rated for use at the AC supply voltage.

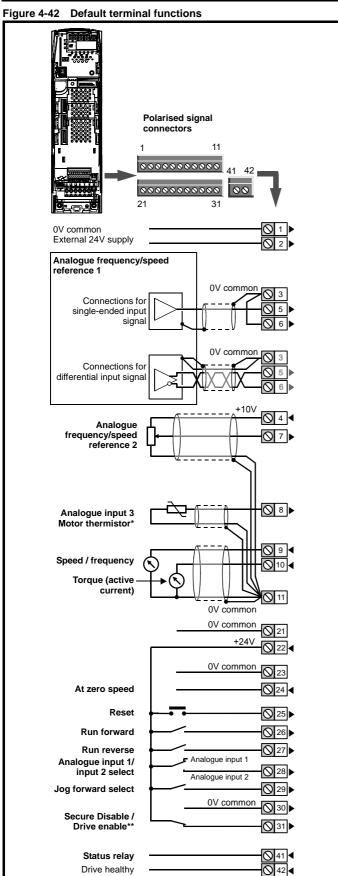
If the control circuits are to be connected to other circuits classified as Safety Extra Low Voltage (SELV) (e.g. to a personal computer), an additional isolating barrier must be included in order to maintain the SELV classification.

If any of the digital inputs or outputs (including the drive enable input) are connected in parallel with an inductive load (i.e. contactor or motor brake) then suitable suppression (i.e. diode or varistor) should be used on the coil of the load. If no suppression is used then over voltage spikes can cause damage to the digital inputs and outputs on the drive.

Ensure the logic sense is correct for the control circuit to be used. Incorrect logic sense could cause the motor to be started unexpectedly. Positive logic is the default state for Unidrive SP.

NOTE

Any signal cables which are carried inside the motor cable (i.e. motor thermistor, motor brake) will pick up large pulse currents via the cable capacitance. The shield of these signal cables must be connected to ground close to the point of exit of the motor cable, to avoid this noise current spreading through the control system.


NOTE

The Secure Disable / drive enable terminal is a positive logic input only. It is not affected by the setting of Pr **8.29** *Positive logic select.*

NOTE

The common 0V from analogue signals should, wherever possible, not be connected to the same 0V terminal as the common 0V from digital signals. Terminals 3 and 11 should be used for connecting the 0V common of analogue signals and terminals 21, 23 and 30 for digital signals. This is to prevent small voltage drops in the terminal connections causing inaccuracies in the analogue signals.

Safety Product Mechanical Electrical Getting Basic Running the motor Optimisati Information Installation Installation Started Parameters motor Optimisati	on Smartcard operation	Onboard PLC	Advanced Parameters	Technical Data	Diagnostics	UL Listing Information
--	------------------------	----------------	------------------------	-------------------	-------------	---------------------------

* With software V01.07.00 and later, Analogue input 3 is configured as a motor thermistor input. With software V01.06.02 and earlier, Analogue input 3 has no default function. Refer to *Analogue input 3* on page 94. **The Secure Disable / Drive enable terminal is a positive logic input only.

4.13.2 Control terminal specification

0V common

Function	Common connection for all external
Function	devices

2	+24V external input				
Functio	on	To supply the control circuit without providing a supply to the power stage			
Nominal	voltage	+24.0Vdc			
Minimur voltage	n continuous operating	+19.2Vdc			
Maximu voltage	m continuous operating	+30.0Vdc			
Minimum start-up voltage		21.6Vdc			
Recommended power supply		60W 24Vdc nominal			
Recomm	nended fuse	3A, 50Vdc			

3	0V common	
Functi	on	Common connection for all external devices

4	+10V user output			
Function		Supply for external analogue devices		
Voltage tolerance		±1%		
Nominal output current		10mA		
Protecti	on	Current limit and trip @ 30mA		

	Precision reference Analogue input 1						
5	Non-inverting input						
6	Inverting input						
Defaul	t function	Frequency/speed reference					
Type of	input	Bipolar differential analogue (For single-ended use, connect terminal 6 to terminal 3)					
Full sca	le voltage range	±9.8V ±1%					
Absolute voltage	e maximum range	±36V relative to 0V					
Working range	g common mode voltage	±13V relative to 0V					
Input re	sistance	100k Ω ±1%					
Resolut	ion	16-bit plus sign (as speed reference)					
Monotonic		Yes (including 0V)					
Dead band		None (including 0V)					
Jumps		None (including 0V)					
Maximu	m offset	700μV					
Maximu	m non linearity	0.3% of input					
Maximum gain asymmetry		0.5%					
Input filter bandwidth single pole		~1kHz					
Samplin	ng period	250µs with destinations as Pr 1.36 , Pr 1.37 or Pr 3.22 in closed loop vector or servo mode. 4ms for open loop mode and all other destinations in closed loop vector or servo mode.					

Safety Information	Product	Mechanical Installation	Electrical Installation	Getting Started	Basic Parameters	Running the motor	Optimisation	Smartcard operation	Onboard PLC	Advanced Parameters	Technical Data	Diagnostics	UL Listing
Information	mormation	Installation	Installation	Starteu	Falameters	motor		operation	FLC	Falameters	Dala		mormation

7 Analogue input 2	
Default function	Frequency/speed reference
Type of input	Bipolar single-ended analogue voltage or unipolar current
Mode controlled by	Pr 7.11
Operating in Voltage mode	
Full scale voltage range	±9.8V ±3%
Maximum offset	±30mV
Absolute maximum voltage range	±36V relative to 0V
Input resistance	>100kΩ
Operating in current mode	
Current ranges	0 to 20mA ±5%, 20 to 0mA ±5%, 4 to 20mA ±5%, 20 to 4mA ±5%
Maximum offset	250μΑ
Absolute maximum voltage (reverse bias)	-36V max
Absolute maximum current	+70mA
Equivalent input resistance	≤200Ω at 20mA
Common to all modes	
Resolution	10 bit + sign
Sample period	250µs when configured as voltage input with destinations as Pr 1.36 , Pr 1.37 , Pr 3.22 or Pr 4.08 in closed loop vector or servo mode. 4ms for open loop mode, all other destinations in closed loop vector or servo mode, or any destination when configured as a current input.

8 Analogue input 3	
Default function	V01.07.00 and later: Motor thermistor input (PTC) V01.06.02 and earlier: Not configured
Type of input	Bipolar single-ended analogue voltage, unipolar current or motor thermistor input
Mode controlled by	Pr 7.15
Operating in Voltage mode (defau	ilt)
Voltage range	±9.8V ±3%
Maximum offset	±30mV
Absolute maximum voltage range	±36V relative to 0V
Input resistance	>100kΩ
Operating in current mode	
Current ranges	0 to 20mA ±5%, 20 to 0mA ±5%, 4 to 20mA ±5%, 20 to 4mA ±5%
Maximum offset	250μΑ
Absolute maximum voltage (reverse bias)	–36V max
Absolute maximum current	+70mA
Equivalent input resistance	≤200Ω at 20mA
Operating in thermistor input mo	de
Internal pull-up voltage	<5V
Trip threshold resistance	3.3kΩ ±10%
Reset resistance	1.8kΩ ±10%
Short-circuit detection resistance	50Ω ±30%
Common to all modes	
Resolution	10 bit + sign
Sample period	250µs when configured as voltage input with destinations as Pr 1.36 , Pr 1.37 , Pr 3.22 or Pr 4.08 in closed loop vector or servo mode. 4ms for open loop mode, all other destinations in closed loop vector or servo mode, or any destination when configured as a current input.

T8 analogue input 3 has a parallel connection to terminal 15 of the drive encoder connector.

9	Analogue output 1			
10	Analogue output 2			
Terminal 9 default function		OL> Motor FREQUENCY output signal CL> SPEED output signal		
Termin	al 10 default function	Motor active current		
Type of	output	Bipolar single-ended analogue voltage or unipolar single ended current		
Mode c	ontrolled by	Pr 7.21 and Pr 7.24		
Operat	ing in Voltage mode (defa	ault)		
Voltage	range	±9.6V ±5%		
Maximu	im offset	100mV		
Maximu	im output current	±10mA		
Load re	sistance	1k Ω min		
Protection		35mA max. Short circuit protection		
Operat	ing in current mode			
Current	ranges	0 to 20mA ±10% 4 to 20mA ±10%		
Maximu	ım offset	600µA		
Maximu	ım open circuit voltage	+15V		
Maximu	im load resistance	500Ω		
Commo	on to all modes	•		
Resolut	ion	10-bit (plus sign in voltage mode)		
Update period		250μs when configured as a high speed output with sources as Pr 4.02 , Pr 4.17 in all modes or Pr 3.02 , Pr 5.03 in closed loop vector or servo mode. 4ms when configured as any other type of output or with all other sources.		

11	0V common	
Functi	on	Common connection for all external devices

21	0V common	
Functi	on	Common connection for all external devices

22	+24V user output (selectable)			
Terminal 22 default function		+24V user output		
Program	nmability	Can be switched on or off to act as a fourth digital output (positive logic only) by setting the source Pr 8.28 and source invert Pr 8.18		
Nominal	output current	200mA (including all digital I/O)		
Maximum output current		240mA (including all digital I/O)		
Protectio	on	Current limit and trip		

23	0V common	
Functi	on	Common connection for all external devices

Optimisation		ical Electrical C		J		5	Optimisation			_	Data	Diagnostics	UL Listing Information
--------------	--	-------------------	--	---	--	---	--------------	--	--	---	------	-------------	---------------------------

information.

24	Digital I/O 1					
25	Digital I/O 2					
26	Digital I/O 3					
Termina	al 24 default function	AT ZERO SPEED output				
Termina	al 25 default function	DRIVE RESET input				
Termina	al 26 default function	RUN FORWARD input				
Туре		Positive or negative logic digital inputs, or negative logic push-pull or open collector outputs				
Input / output mode controlled by		Pr 8.31, Pr 8.32 and Pr 8.33				
Operati	ng as an input					
Logic mode controlled by		Pr 8.29				
Absolute maximum applied voltage range		±30V				
Load		<2mA @ 15Vdc				
Input thresholds		10.0V ±0.8V				
Operati	ng as an output					
Open co	ellector outputs selected	Pr 8.30				
Nominal maximum output current		200mA (total including terminal 22)				
Maximum output current		240mA (total including terminal 22)				
Commo	on to all modes					
Voltage	range	0V to +24V				
Sample	/ Update period	250μs when configured as an input with destinations as Pr 6.35 or Pr 6.36 . 4ms in all other cases.				

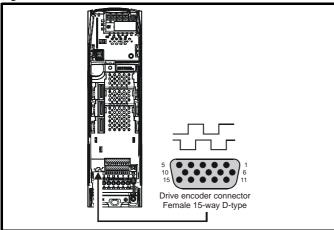
27	Digital Input 4					
	Digital input i	•				
28	Digital Input 5					
29	Digital Input 6					
Termina	al 27 default function	RUN REVERSE input				
Terminal 28 default function		ANALOGUE INPUT 1 / INPUT 2 select				
Terminal 29 default function		JOG SELECT input				
Туре		Negative or positive logic digital inputs				
Logic mode controlled by		Pr 8.29				
Voltage range		0V to +24V				
Absolute maximum applied voltage range		±30V				
Load		<2mA @ 15V				
Input thresholds		10.0V ±0.8V				
Sample / Update period		250μs with destinations as Pr 6.35 or Pr 6.36 . 4ms in all other cases.				

30	0V common	
Functio	on	Common connection for all external devices

31	Drive enable (SECURE DISABLE function)									
Туре		Positive logic only digital input								
Voltage	range	0V to +24V								
Absolut	e maximum applied voltage	±30V								
Thresho	olds	18.5V ±0.5V								
Sample	period	Disabling the drive (hardware): <100µs Enabling the drive (software): 4ms								
functio EN954 drive. I	n. The SECURE DISABL -1 category 3 for the pre- t may be used in a safety	provides a SECURE DISABLE E function meets the requirements of vention of unexpected starting of the v-related application in preventing the the motor to a high level of integrity.								

Refer to section 4.16 SECURE DISABLE on page 100 for further

41 Relay contacts	
Default function	Drive healthy indicator
Contact voltage rating	240Vac, Installation over-voltage category II
Contact maximum current rating	2A AC 240V 4A DC 30V resistive load 0.5A DC 30V inductive load (L/R = 40ms)
Contact minimum recommended rating	12V 100mA
Contact type	Normally open
Default contact condition	Closed when power applied and drive healthy
Update period	4ms



A fuse or other over-current protection should be fitted to the relay circuit.

Safe	ty Product	Mechanical	Electrical	Getting	Basic	Running the	Optimisation	Smartcard		Advanced	Technical	Diagnostics	UL Listing
Informa	ation Information	Installation	Installation	Started	Parameters	motor	Optimisation	operation	PLC	Parameters	Data	Diagnostics	Information

4.14 Encoder connections

Figure 4-43 Location of encoder connector

Table 4-19 Encoder types

Setting of Pr 3.38	Description
Ab (0)	Quadrature incremental encoder with or without marker pulse
Fd (1)	Incremental encoder with frequency pulses and direction, with or without marker pulse
Fr (2)	Incremental encoder with forward pulses and reverse pulses, with or without marker pulse
Ab.SErVO (3)	Quadrature incremental encoder with UVW commutation signals, with or without marker pulse Encoder with UVW commutation signals only (Pr 3.34 set to zero)*
Fd.SErVO (4)	Incremental encoder with frequency pulses and direction with commutation signals**, with or without marker pulse
Fr.SErVO (5)	Incremental encoder with forward pulses and reverse pulses with commutation signals**, with or without marker pulse
SC (6)	SinCos encoder without serial communications
SC.HiPEr (7)	Absolute SinCos encoder with HiperFace serial communications protocol (Stegmann)
EndAt (8)	Absolute EndAt serial communications encoder (Heidenhain)
SC.EndAt (9)	Absolute SinCos encoder with EnDat serial communications protocol (Heidenhain)
SSI (10)	Absolute SSI only encoder
SC.SSI (11)	Absolute SinCos encoder with SSI

* This feedback device provides very low resolution feedback and should not be used for applications requiring a high level of performance

** The U, V & W commutation signals are required with an incremental type encoder when used with a servo motor. The UVW commutation signals are used to define the motor position during the first 120° electrical rotation after the drive is powered-up or the encoder is initialised.

Safety		Mechanical	Electrical	Getting	_	Running the	Optimisation	Smartcard	Onboard	Advanced	Technical	Diagnostics	UL Listing
Information	Information	Installation	Installation	Started	Parameters	motor		operation	PLC	Parameters	Data	g	Information

Table 4-20 Drive encoder connector details

						Setting of	Pr 3.38						
Terminal	Ab (0)	Fd (1)	Fr (2)	Ab.SErVO (3)			SC (6)	SC.HiPEr (7)	EndAt (8)	SC.EndAt (9)	SSI (10)	SC.SSI (11)	
1	А	F	F	A F F				Cos		Cos		Cos	
2	A\	F\	F\	A\	F\	F\	С	osref		Cosref		Cosref	
3	В	D	R	В	D	R		Sin		Sin		Sin	
4	B\	D\	R\	B\	D\	R\	S	Sinref		Sinref		Sinref	
5		Z*						E	ncoder inp	ut - Data (inpu	ut/output)		
6		Z*						Encoder input - Data\ (input/output)					
7	Simulated encoder Aout, Fout**					Simulated encoder Aout, Fout**							
8	-	ulated enc out Fout\		er U\				Simulated encoder Aout Fout**					
9	-	ulated enc Bout, Dout [*]			V					d encoder Dout**			
10	-	ulated enc out Dout\			V\			Simulated encoder Bout\. Dout**					
11					W				Enc	coder input - C	lock (out	out)	
12					W				Enc	oder input - C	lock\ (out	put)	
13						+V**	**		1				
14						0V com	mon						
15						th***	*						

* Marker pulse is optional

** Simulated encoder output only available in open-loop

*** The encoder supply is selectable through parameter configuration to 5Vdc, 8Vdc and 15Vdc

**** Terminal 15 is a parallel connection to T8 analogue input 3. If this is to be used as a thermistor input, ensure that Pr **7.15** is set to 'th.sc' (7), 'th' (8) or 'th.diSP' (9).

NOTE

SSI encoders typically have maximum baud rate of 500kBaud. When a SSI only encoder is used for speed feedback with a closed loop vector or servo motor, a large speed feedback filter (Pr **3.42**) is required due to the time taken for the position information to be transferred from the encoder into the drive. The addition of this filter means that SSI only encoders are not suitable for speed feedback in dynamic or high-speed applications.

				_		Optimisation				recinical	Diagnostics	UL Listing Informatio
--	--	--	--	---	--	--------------	--	--	--	-----------	-------------	--------------------------

4.14.1 Specifications

Feedback device connections

Ab, Fd, Fr, Ab.SErVO, Fd.SErVO and Fr.SErVO encoders

1 Channel A, Frequency or	1 Channel A, Frequency or Forward inputs							
2 Channel A Frequency\ o	2 Channel A Frequency\ or Forward\ inputs							
3 Channel B, Direction or R	everse inputs							
4 Channel B Direction\ or	Reverse\ inputs							
Туре	EIA 485 differential receivers							
Maximum input frequency	V01.06.01 and later: 500kHz V01.06.00 and earlier: 410kHz							
Line loading	<2 unit loads							
Line termination components	120 Ω (switchable)							
Working common mode range	+12V to -7V							
Absolute maximum applied voltage relative to 0V	±25V							
Absolute maximum applied differential voltage	±25V							

5	Marker pulse channel Z	
6	Marker pulse channel Z\	
7	Phase channel U	
8	Phase channel U\	
9	Phase channel V	
10	Phase channel V\	
11	Phase channel W	
12	Phase channel W\	
Туре		EIA 485 differential receivers
Maxim	um input frequency	512kHz
Line lo	ading	32 unit loads (for terminals 5 and 6) 1 unit load (for terminals 7 to 12)
Line te	ermination components	120Ω (switchable for terminals 5 and 6, always in circuit for terminals 7 to 12)
Workir	ng common mode range	+12V to -7V
	ite maximum applied voltage e to 0V	+14V to -9V
Absolu voltage	ute maximum applied differential e	+14V to -9V

SC, SC.HiPEr, EndAt, SC.EndAt, SSI and SC.SSI encoders

1	Channel Cos*					
2	Channel Cosref*					
3	Channel Sin*					
4	Channel Sinref*					
Туре		Differential voltage				
Maxim	um Signal level	1.25V peak to peak (sin with regard to sinref and cos with regard to cosref)				
Maxim	um input frequency	See Table 4-21				
	um applied differential voltage	±4V				

For the SinCos encoder to be compatible with Unidrive SP, the output signals from the encoder must be a 1V peak to peak differential voltage (across Sin to Sinref and Cos to Cosref).

The majority of encoders have a DC offset on all signals. Stegmann encoders typically have a 2.5Vdc offset. The Sinref and Cosref are a flat DC level at 2.5Vdc and the Cos and Sin signals have a 1V peak to peak waveform biased at 2.5Vdc.

Encoders are available which have a 1V peak to peak voltage on Sin, Sinref, Cos and Cosref. This results in a 2V peak to peak voltage seen at the drive's encoder terminals. It is not recommended that encoders of this type are used with Unidrive SP, and that the encoder feedback signals should meet the above parameters (1V peak to peak).

Resolution: The sinewave frequency can be up to 500kHz but the resolution is reduced at high frequency. Table 4-21 shows the number of bits of interpolated information at different frequencies and with different voltage levels at the drive encoder port. The total resolution in bits per revolution is the ELPR plus the number of bits of interpolated information. Although it is possible to obtain 11 bits of interpolation information, the nominal design value is 10 bits.

Not used with EndAt and SSI communications only encoders.

Table 4-21	Feedback resolution based on frequency and voltage level	L
	I COUDACK I COULIUII DAOCU UII II CUUCIICY AIIU VUILAUCIEVE	

Volt/Freq	1kHz	5kHz	50kHz	100kHz	200kHz	500kHz
1.2	11	11	10	10	9	8
1.0	11	11	10	9	9	7
0.8	10	10	10	9	8	7
0.6	10	10	9	9	8	7
0.4	9	9	9	8	7	6

5	Data**						
6	Data**						
11	Clock***						
12	Clock***						
Туре		EIA 485 differential transceivers					
Maxim	um frequency	2MHz					
Line la	ading	32 unit loads (for terminals 5 and 6) 1 unit load (for terminals 11 and 12)					
Workir	ng common mode range	+12V to -7V					
	ite maximum applied voltage e to 0V	±14V					
Absolu voltage	ite maximum applied differential	±14V					

Not used with SC encoders.

*** Not used with SC and SC.HiPEr encoders.

Safety Information	Product Information	Mechanical Installation	Electrical Installation	Getting Started	Basic Parameters	Running the motor	Optimisation	Smartcard operation	Onboard PLC	Advanced Parameters	Technical Data	Diagnostics	UL Listing Information
-----------------------	------------------------	----------------------------	----------------------------	--------------------	---------------------	-------------------	--------------	---------------------	----------------	------------------------	-------------------	-------------	---------------------------

Frequency slaving outputs (open loop only)

Ab, Fd, Fr, SC, SC.HiPEr, EndAt, SC.EndAt, SSI and SC.SSI encoders

7 Frequency slaving out ch	annel A							
8 Frequency slaving out ch	Frequency slaving out channel A\							
9 Frequency slaving out ch	annel B							
10 Frequency slaving out ch	annel B\							
Туре	EIA 485 differential transceivers							
Maximum output frequency	512kHz							
Absolute maximum applied voltage relative to 0V	±14V							
Absolute maximum applied differential voltage	±14V							

Common to all Encoder types

13 Encoder supply voltage	
Supply voltage	5.15V ±2%, 8V ±5% or 15V ±5%
Maximum output current	300mA for 5V and 8V 200mA for 15V

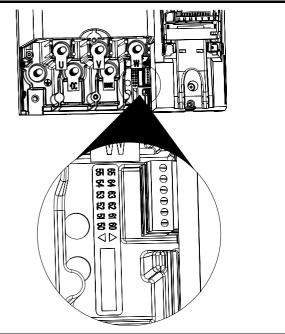
The voltage on terminal 13 is controlled by Pr 3.36. The default for this parameter is 5V (0) but this can be set to 8V (1) or 15V (2). Setting the encoder voltage supply too high for the encoder could result in damage to the feedback device.

If the 15V encoder supply is selected then the termination resistors must be disabled.

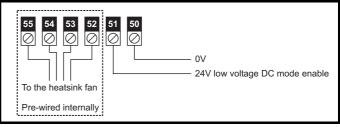
The termination resistors should be disabled if the outputs from the encoder are higher than 5V.

14 0V common

15 Motor thermistor input


This terminal is connected internally to terminal 8 of the signal connector. Connect only one of these terminals to a motor thermistor. Analogue input 3 must be in thermistor mode, Pr **7.15** = th.SC (7), th (8) or th.diSP (9).

4.15 Low voltage DC mode enable and heatsink fan supply connections (size 4 to 6)


Unidrive SP sizes 4 to 6 require a 24V enable signal to terminal 50 and 51 of the lower terminal connector near the W phase output, to allow the drive to be used from a low voltage DC supply.

For more information regarding low voltage DC operation, see the *Low Voltage DC Mode Application Note.*

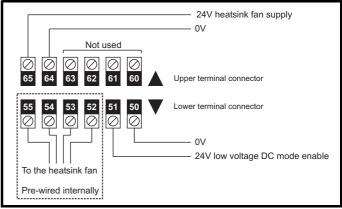
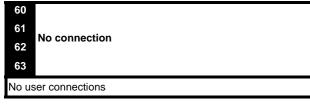

Figure 4-44 Location of the size 4 to 6 low voltage DC mode enable connections

Figure 4-45 Size 4 and 5 low voltage DC mode enable connections

Figure 4-46 Size 6 low voltage DC mode enable connections


Safety Information	Product Information	Mechanical Installation	Electrical Installation	Getting Started	Basic Parameters	Running the motor	Optimisation	Smartcard operation	Onboard PLC	Advanced Parameters	Technical Data	Diagnostics	UL Listing Information
-----------------------	------------------------	----------------------------	----------------------------	--------------------	---------------------	----------------------	--------------	---------------------	----------------	------------------------	-------------------	-------------	---------------------------

4.15.1 Low voltage DC mode enable connections (sizes 4 to 6)

50 OV											
51 24V low voltage DC mode enable											
Function	To allow the drive it be used from low voltage DC supply										
Nominal voltage	24.0Vdc										
Minimum continuous operating voltage	19.2Vdc										
Maximum continuous operating voltage	30.0Vdc										
Nominal current consumption	500mA										
Recommended fuse	8A 600V AC fast acting class CC type fuse										

52 53 54 55	Heatsink fan connections
No us	er connections

4.15.2 Heatsink fan supply connections (size 6 only)

64 OV											
65 24V heatsink fan supply											
Function	To provide the power supply to the heatsink mounted fan										
Nominal voltage	24Vdc										
Minimum continuous operating voltage	23.5V										
Maximum continuous operating voltage	27V										
Current consumption	3.3A										
Recommended power supply	24V, 100W, 4.5A										
Recommended fuse	4A fast blow (I ² t less than 20A ² s)										

4.16 SECURE DISABLE

The Secure Disable (SD) function provides a means for preventing the drive from generating torque in the motor, with a very high level of integrity. It is suitable for incorporation into a safety system for a machine. It is also suitable for use as a conventional drive enable input.

The SD function makes use of the special property of an inverter drive with an induction motor, which is that torque cannot be generated without the continuous correct active behaviour of the inverter circuit. All credible faults in the inverter power circuit cause a loss of torque generation.

The SD function is fail-safe, so when the SD input is disconnected the drive will not operate the motor, even if a combination of components within the drive has failed. Most component failures are revealed by the drive failing to operate. SD is also independent of the drive firmware. This meets the requirements of EN954-1 category 3 for the prevention of operation of the motor.¹

¹ Independent approval by BGIA has been given.

SD can be used to eliminate electro-mechanical contactors, including special safety contactors, which would otherwise be required for safety applications.

Note on the use of servo motors, other permanent-magnet motors, reluctance motors and salient-pole induction motors

When the drive is disabled through Secure Disable, a possible (although highly unlikely) failure mode is for two power devices in the inverter circuit to conduct incorrectly.

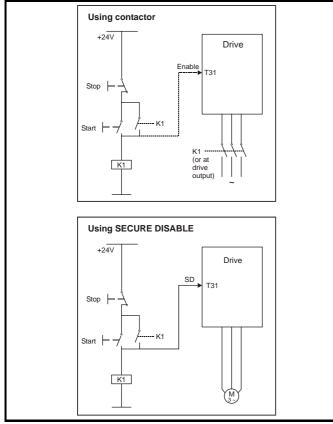
This fault cannot produce a steady rotating torque in any AC motor. It produces no torque in a conventional induction motor with a cage rotor. If the rotor has permanent magnets and/or saliency, then a transient alignment torque may occur. The motor may briefly try to rotate by up to 180° electrical, for a permanent magnet motor, or 90° electrical, for a salient pole induction motor or reluctance motor. This possible failure mode must be allowed for in the machine design.

The design of safety-related control systems must only be done by personnel with the required training and experience.

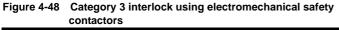
The SD function will only ensure the safety of a machine if it is correctly incorporated into a complete safety system. The system must be subject to a risk assessment to confirm that the residual risk of an unsafe event is at an acceptable level for the application.

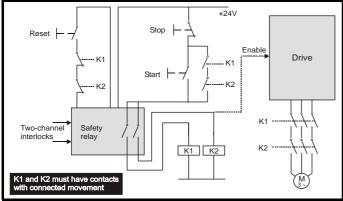
To maintain category 3 according to EN954-1 the drive must be located inside an enclosure with degree of protection at least IP54.

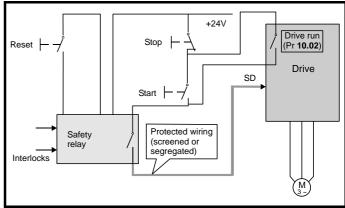
SD inhibits the operation of the drive, this includes inhibiting braking. If the drive is required to provide both braking and secure disable in the same operation (e.g. for emergency stop) then a safety timer relay or similar device must be used to ensure that the drive is disabled a suitable time after braking. The braking function in the drive is provided by an electronic circuit which is not fail-safe. If braking is a safety requirement, it must be supplemented by an independent fail-safe braking mechanism.



SD does not provide electrical isolation. The supply to the drive must be disconnected by an approved isolation device before gaining access to power connections.


The following diagrams illustrate how the SD input can be used to eliminate contactors and safety contactors from control systems. Please note these are provided for illustration only, every specific arrangement must be verified for suitability in the proposed application.


In the first example, illustrated in Figure 4-47, the SD function is used to replace a simple power contactor in applications where the risk of injury from unexpected starting is small, but it is not acceptable to rely on the complex hardware and firmware/software used by the stop/start function within the drive.


In the second example, illustrated in Figure 4-48 and Figure 4-49, a conventional high-integrity system which uses two safety contactors with auxiliary contacts with connected movement is replaced by a single Secure Disable system. This arrangement meets EN954-1 category 3.

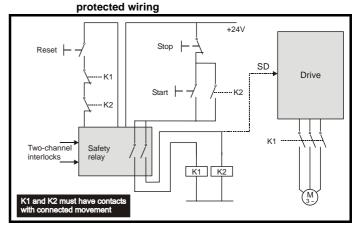
The safety function of the example circuit is to ensure that the motor does not operate when the interlocks are not signalling a safe state. The safety relay is used to check the two interlock channels and detect faults in those channels. The stop/start buttons are shown for completeness as part of a typical arrangement, they do not carry out a safety function and are not necessary for the safe operation of the circuit.

Figure 4-49 Category 3 interlock using Secure Disable with protected wiring

In the conventional system, a contactor failure in the unsafe direction is detected the next time the safety relay is reset. Since the drive is not part of the safety system it has to be assumed that AC power is always available to drive the motor, so two contactors in series are required in order to prevent the first failure from causing an unsafe event (i.e. the motor driven).

With Secure Disable there are no single faults in the drive which can permit the motor to be driven. Therefore it is not necessary to have a second channel to interrupt the power connection, nor a fault detection circuit.

It is important to note that a single short-circuit from the Enable input (SD) to a DC supply of approximately +24V would cause the drive to be enabled. For this reason, Figure 4-49 shows the wire from the Enable input to the safety relay as "protected wiring" so that the possibility of a short circuit from this wire to the DC supply can be excluded, as specified in ISO 13849-2. The wiring can be protected by placing it in a segregated cable duct or other enclosure, or by providing it with a grounded shield. The shield is provided to avoid a hazard from an electrical fault. It may be grounded by any convenient method, no special EMC precautions are required.


If the use of protected wiring is not acceptable, so that the possibility of this short circuit must be allowed for, then a relay must be used to monitor the state of the Enable input, together with a single safety contactor to prevent operation of the motor after a fault. This is illustrated in Figure 4-50.

NOTE

Figure 4-50

The auxiliary relay K2 must be located in the same enclosure and close to the drive, with its coil connected as closely as possible to the drive enable (SD) input.

Use of contactor and relay to avoid the need for

For further applications guidance, refer to the *Unidrive SP Advanced User Guide*.

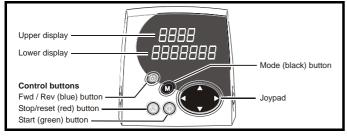
Safety	Product	Mechanical	Electrical	Getting	Basic	Running the	Ontimication	Smartcard	Onboard	Advanced	Technical	Diagnostics	UL Listing
Information	Information	Installation	Installation	Started	Parameters	motor	Optimisation	operation	PLC	Parameters	Data	Diagnostics	Information

5 Getting Started

This chapter introduces the user interfaces, menu structure and security level of the drive.

5.1 Understanding the display

There are two keypads available for the Unidrive SP. The SM-Keypad has an LED display and the SM-Keypad Plus has an LCD display. Both keypads can be fitted to the drive but the SM-Keypad Plus can also be remotely mounted on an enclosure door.


5.1.1 SM-Keypad (LED)

The display consists of two horizontal rows of 7 segment LED displays.

The upper display shows the drive status or the current menu and parameter number being viewed.

The lower display shows the parameter value or the specific trip type.

Figure 5-1 SM-Keypad

NOTE The red stop 💿 button is also used to reset the drive.

Both the SM-Keypad and the SM-Keypad Plus can indicate when a SMARTCARD access is taking place or when the second motor map is active (menu 21). These are indicated on the displays as follows.

	SM-Keypad	SM-Keypad Plus
SMARTCARD access taking place	The decimal point after the fourth digit in the upper display will flash.	The symbol 'CC' will appear in the lower left hand corner of the display
Second motor map active	The decimal point after the third digit in the upper display will flash.	The symbol 'Mot2' will appear in the lower left hand corner of the display

5.2 Keypad operation

5.2.1 Control buttons

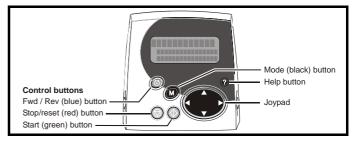
The keypad consists of:

1. Joypad - used to navigate the parameter structure and change parameter values.

- 2. Mode button used to change between the display modes parameter view, parameter edit, status.
- 3. Three control buttons used to control the drive if keypad mode is selected.
- 4. Help button (SM-Keypad Plus only) displays text briefly describing the selected parameter.

The Help button toggles between other display modes and parameter help mode. The up and down functions on the joypad scroll the help text to allow the whole string to be viewed. The right and left functions on the joypad have no function when help text is being viewed.

The display examples in this section show the SM-Keypad 7 segment LED display. The examples are the same for the SM-Keypad Plus except that the information displayed on the lower row on the SM-Keypad is displayed on the right hand side of the top row on the SM-Keypad Plus.


5.1.2 SM-Keypad Plus (LCD)

The display consists of three lines of text.

The top line shows the drive status or the current menu and parameter number being viewed on the left, and the parameter value or the specific trip type on the right.

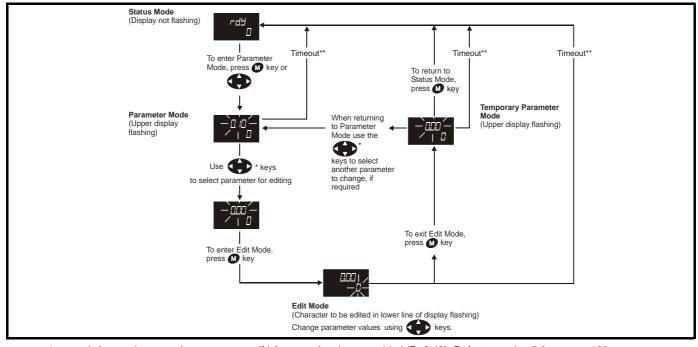

The lower two lines show the parameter name or the help text.

Figure 5-2 SM-Keypad Plus

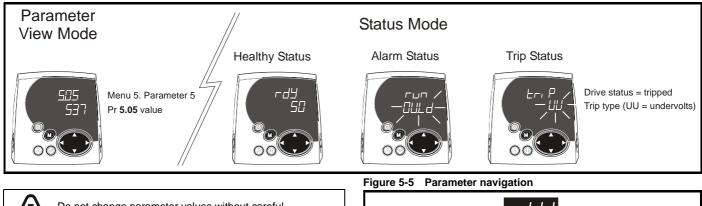

	Safety Information	Product Information	Mechanical Installation	Electrical Installation	Getting Started	Basic Parameters	motor	Optimisation	Smartcard operation	Onboard PLC	Advanced Parameters	Technical Data	Diagnostics	UL Listing Information
--	-----------------------	------------------------	----------------------------	----------------------------	--------------------	---------------------	-------	--------------	---------------------	----------------	------------------------	-------------------	-------------	---------------------------

Figure 5-3 Display modes

* can only be used to move between menus if L2 access has been enabled (Pr **0.49**). Refer to section 5.9 on page 106. **Timeout defined by Pr **11.41** (default value = 240s).

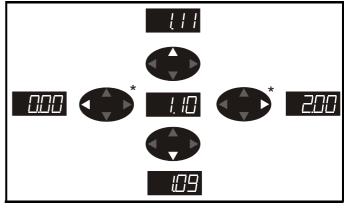
Figure 5-4 Mode examples

Do not change parameter values without careful consideration; incorrect values may cause damage or a safety hazard.

NOTE

WARNING

When changing the values of parameters, make a note of the new values in case they need to be entered again.


NOTE

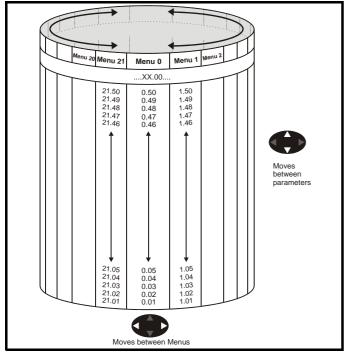
For new parameter-values to apply after the AC supply to the drive is interrupted, new values must be saved. Refer to section 5.7 *Saving parameters* on page 106.

5.3 Menu structure

The drive parameter structure consists of menus and parameters.

The drive initially powers up so that only menu 0 can be viewed. The up and down arrow buttons are used to navigate between parameters and once level 2 access (L2) has been enabled (see Pr **0.49**) the left and right buttons are used to navigate between menus. For further information, refer to section 5.9 *Parameter access level and security* on page 106.

* can only be used to move between menus if L2 access has been enabled (Pr **0.49**). Refer to section 5.9 *Parameter access level and security* on page 106.

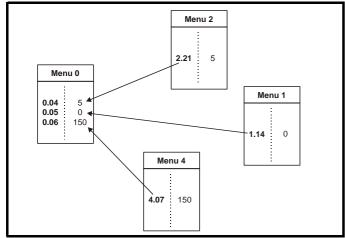

The menus and parameters roll over in both directions.

i.e. if the last parameter is displayed, a further press will cause the display to rollover and show the first parameter.

When changing between menus the drive remembers which parameter was last viewed in a particular menu and thus displays that parameter.

Safety	Product	Mechanical	Electrical	Getting	Basic	Running the	Optimisation	Smartcard	Onboard	Advanced	Technical	Diagnostics	UL Listing
Information	Information	Installation	Installation	Started	Parameters	motor	opumouton	operation	PLC	Parameters	Data	Diagnostics	Information

Figure 5-6 Menu structure


5.4 Menu 0

Menu 0 is used to bring together various commonly used parameters for basic easy set up of the drive.

Appropriate parameters are cloned from the advanced menus into menu 0 and thus exist in both locations.

For further information, refer to Chapter 6 *Basic parameters (Menu 0)* on page 109.

Figure 5-7 Menu 0 Cloning

5.5 Advanced menus

The advanced menus consist of groups or parameters appropriate to a specific function or feature of the drive. Menus 0 to 22 can be viewed on both keypads. Menus 40 and 41 are specific to the SM-Keypad Plus (LCD). Menus 70 to 91 can be viewed with an SM-Keypad Plus (LCD) only when an SM-Applications is fitted.

Menu	Description	LED	LCD
0	Commonly used basic set up parameters for quick / easy programming	~	~
1	Frequency / speed reference	√	~
2	Ramps	√	~
3	Slave frequency, speed feedback and speed control	~	~
4	Torque and current control	✓	✓
5	Motor control	✓	✓
6	Sequencer and clock	✓	✓
7	Analogue I/O	✓	✓
8	Digital I/O	✓	✓
9	Programmable logic, motorised pot and binary sum	~	~
10	Status and trips	✓	✓
11	General drive set-up	✓	✓
12	Threshold detectors and variable selectors	✓	✓
13	Position control	✓	✓
14	User PID controller	✓	✓
15, 16, 17	Solutions Module set-up	~	~
18	Application menu 1	√	~
19	Application menu 2	✓	✓
20	Application menu 3	✓	✓
21	Second motor parameters	✓	✓
22	Additional Menu 0 set-up	✓	✓
40	Keypad configuration menu	Х	✓
41	User filter menu	Х	✓
70	PLC registers	Х	✓
71	PLC registers	Х	✓
72	PLC registers	Х	✓
73	PLC registers	Х	✓
74	PLC registers	Х	✓
75	PLC registers	Х	✓
85	Timer function parameters	Х	✓
86	Digital I/O parameters	Х	✓
88	Status parameters	Х	✓
90	General parameters	Х	~
91	Fast access parameters	Х	~

Safety Information	Product Information	Mechanical Installation	Electrical Installation	Getting Started	Basic Parameters	Running the motor	Optimisation	Smartcard operation	Onboard PLC	Advanced Parameters	Technical Data	Diagnostics	UL Listing Information
								•					

5.5.1 SM-Keypad Plus set-up menus

Pr	Title	Description
40.00	Zero parameter	Same as every other zero parameter
40.01	Language select	English, Custom, French, German, Spanish, Italian
40.02	Keypad software revision	Firmware revision (e.g. 40102 is revision 04.01.02) (read-only)
40.03	Save configuration to flash	Idle, Save, Restore, Defaults
40.04	LCD contrast	xxx = Contrast Setting (0 = minimum, 31 = maximum)
40.05	SMARTCARD save/ restore	Idle, Save, Restore (not implemented)
40.06	Browsing filter	Normal, Filter
40.07	Keypad security code	xxx = PIN number to enable/disable keypad security
40.08	Enable string DB upload	Disable, Enable
40.09	Hardware key security code	Range = 0 to 999 to match drive security code
40.10	Keypad serial address	Needs to match drive serial address
40.11	Keypad memory size	4Mbit, 8Mbit (read-only)

Pr	Title	Description
41.00	Zero parameter	Same as every other zero parameter
41.01 to 41.20	Browsing filter F01 to F20	smmpp = any parameter (slot, menu, parameter)
41.21	Browsing filter exit parameter	"Normal", "Filter"

5.5.2 Display messages

The following tables indicate the various possible mnemonics which can be displayed by the drive and their meaning.

Trip types are not listed here but can be found in Chapter 6 *Basic parameters (Menu 0)* on page 109 if required.

Table 5-1 Alarm indications

Lower display	Description						
br.rS	Braking resistor overload						
Braking resistor I^2 t accumulator (Pr 10.37) in the drive has reached 75.0% of the value at which the drive will trip and the braking IGBT is active.							
Hot	Heatsink or control board or inverter IGBT over temperature alarms are active						
	 The drive heatsink temperature has reached a threshold and the drive will trip 'Oh2' if the temperature continues to rise (see the 'Oh2' trip). 						
or							
	nt temperature around the control PCB is approaching nperature threshold (see the 'O.CtL' trip).						
OVLd	Motor overload						
The motor l^2t accumulator in the drive has reached 75% of the value at which the drive will be tripped and the load on the drive is >100%							

Table 5-2 Status indications

Upper display	Description	Drive output stage
supply.	Regeneration mode active is enabled and synchronised to the	Enabled
lost and is atter by decelerating	AC Supply loss letected that the AC supply has been npting to maintain the DC bus voltage the motor.	Enabled
	Autotune in progress rocedure has been initialised. E' will flash alternatively on the display.	Enabled
	DC applied to the motor plying DC injection braking.	Enabled
dEC The drive is dee	Decelerating celerating the motor.	Enabled
	Inhibit ibited and cannot be run. le signal is not applied to terminal 31 or o 0.	Disabled
An Onboard PL	Onboard PLC program is running C program is fitted and running. ay will flash 'PLC' once every 10s.	Not applicable
POS The drive is pos	Positioning sitioning/orientating the motor shaft.	Enabled
rdY The drive is rea	Ready ady to be run.	Disabled
run The drive is rur	Running ning.	Enabled
when synchron	Scanning is searching for the motor frequency ising to a spinning motor. ive is enabled and is synchronising to	Enabled
Regen> The dr low, or the DC I	Stop or holding zero speed ding zero speed. ive is enabled but the AC voltage is too bus voltage is still rising or falling.	Enabled
The drive has t	Trip condition ripped and is no longer controlling the code appears on the lower display.	Disabled

 Table 5-3
 Solutions Module and SMARTCARD status indications on power-up

Lower display	Description						
boot							
A parameter set is being transferred from the SMARTCARD to the drive during power-up. For further information, please refer to section 9.2.4 <i>Booting up from the SMARTCARD on every power up (Pr 11.42 = boot (4))</i> on page 153.							
cArd							
The drive is wri	ting a parameter set to the SMARTCARD during power-						
up. For further information, please refer to section 9.2.3 <i>Auto saving parameter changes (Pr 11.42 = Auto (3))</i> on page 153.							
loAding							
The drive is wri	ting information to a Solutions Module.						

Safety Product Mechanical Electrical Getting Basic Running the	Smartcard	Onboard	Advanced	Technical	Diagnostics	UL Listing
motor Optimisation Information Installation Installation Started Parameters Motor Optimisation	operation	PLC	Parameters	Data		Information

5.6 Changing the operating mode

Changing the operating mode returns all parameters to their default value, including the motor parameters. (Pr **0.49** *Security status* and Pr **0.34** *User security code* are not affected by this procedure.)

Procedure

Use the following procedure only if a different operating mode is required:

- 1. Ensure the drive is not enabled, i.e. terminal 31 is open or Pr 6.15 is Off (0)
- Enter either of the following values in Pr 0.00, as appropriate: 1253 (Europe, 50Hz AC supply frequency) 1254 (USA, 60Hz AC supply frequency)
- 3. Change the setting of Pr 0.48 as follows:

0.48 setting		Operating mode		
0256 LP	1	Open-loop		
С. UECE	2	Closed-loop Vector		
0,48 56+00	3	Closed-loop Servo		
048 FESEn	4	Regen (See the Unidrive SP Regen Installation Guide for more information about operating in this mode)		

The figures in the second column apply when serial communications are used.

- 4. Either:
- Toggle the reset digital input
- Carry out a drive reset through serial communications by setting Pr **10.38** to 100 (ensure that Pr. **xx.00** returns to 0).

5.7 Saving parameters

When changing a parameter in Menu 0, the new value is saved when pressing the Mode button to return to parameter view mode from parameter edit mode.

If parameters have been changed in the advanced menus, then the change will not be saved automatically. A save function must be carried out.

Procedure

Enter 1000* in Pr. xx.00

Either:

- Toggle the reset digital input
- Carry out a drive reset through serial communications by setting Pr **10.38** to 100 (ensure that Pr. **xx.00** returns to 0).

*If the drive is in the under voltage trip state or is being supplied from a low voltage DC supply, a value of 1001 must be entered into Pr **xx.00** to perform a save function.

5.8 Restoring parameter defaults

Restoring parameter defaults by this method saves the default values in the drive's memory. (Pr **0.49** and Pr **0.34** are not affected by this procedure.)

Procedure

- 1. Ensure the drive is not enabled, i.e. terminal 31 is open or Pr 6.15 is Off (0)
- Enter 1233 (EUR 50Hz settings) or 1244 (USA 60Hz settings) in Pr xx.00.
- 3. Either:
- Toggle the reset digital input
- Carry out a drive reset through serial communications by setting Pr **10.38** to 100 (ensure that Pr. **xx.00** returns to 0).

5.9 Parameter access level and security

The parameter access level determines whether the user has access to menu 0 only or to all the advanced menus (menus 1 to 21) in addition to menu 0.

The User Security determines whether the access to the user is read only or read write.

Both the User Security and Parameter Access Level can operate independently of each other as shown in the table below:

Parameter Access Level	User Security	Menu 0 status	Advanced menus status		
L1	Open	RW	Not visible		
L1	Closed	RO	Not visible		
L2	Open	RW	RW		
L2	Closed	RO	RO		


RW = Read / write access RO = Read only access

The default settings of the drive are Parameter Access Level L1 and user Security Open, i.e. read / write access to Menu 0 with the advanced menus not visible.

5.9.1 Access Level

The access level is set in \mbox{Pr} **0.49** and allows or prevents access to the advanced menu parameters.

L1 access selected - Menu 0 only visible

L2 access selected - All parameters visible

Pr 0.00	Pr 1.00	 Pr 20.00	Pr 21.00
Pr 0.01	Pr 1.01	 Pr 20.01	Pr 21.01
Pr 0.02	Pr 1.02	 Pr 20.02	Pr 21.02
Pr 0.03	Pr 1.03	 Pr 20.03	Pr 21.03
Pr 0.49	Pr 1.49	 Pr 20.49	Pr 21.49
Pr 0.50	Pr 1.50	 Pr 20.50	Pr 21.50

5.9.2 Changing the Access Level

The Access Level is determined by the setting of Pr 0.49 as follows:

String	Value	Effect
L1	0	Access to menu 0 only
L2	1	Access to all menus (menu 0 to menu 21)

The Access Level can be changed through the keypad even if the User Security has been set.

Safety	Product	Mechanical	Electrical	Getting	Basic	Running the	Ontinuination	Smartcard	Onboard	Advanced	Technical	Diamanting	UL Listing
Information	Information	Installation	Installation	Started	Parameters	motor	Optimisation	operation	PLC	Parameters	Data	Diagnostics	Information

5.9.3 User Security

The User Security, when set, prevents write access to any of the parameters (other than Pr. **0.49** and Pr **11.44** *Access Level*) in any menu.

Pr 0.00	Pr 1.00	 Pr 20.00	Pr 21.00
Pr 0.01	Pr 1.01	 Pr 20.01	Pr 21.01
Pr 0.02	Pr 1.02	 Pr 20.02	Pr 21.02
Pr 0.03	Pr 1.03	 Pr 20.03	Pr 21.03
Pr 0.49	Pr 1.49	 Pr 20.49	Pr 21.49
Pr 0.50	Pr 1.50	 Pr 20.50	Pr 21.50

User security closed - All parameters: Read Only access (except Pr 0.49 and Pr 11.44)

Pr 0.00	Pr 1.00		Pr 20.00	Pr 21.00
Pr 0.01 /	/ Pr 1.01	/.	Pr 20.01	Pr 21.01
Pr 0.02	Pr 1.02		Pr 20.02	Pr 21.02
Pr 0.03/	Pr 1.03		Pr 20.03	Pr 21.03
/		//		
				\overline{V}
Pr 0.49	Pr 1.49	/	Pr 20.49	/Pr 21.49
Pr 0.50	Pr 1.50		Pr 20.50	Pr 21.50

Setting User Security

Enter a value between 1 and 999 in Pr **0.34** and press the **W** button; the security code has now been set to this value. In order to activate the security, the Access level must be set to Loc in Pr **0.49**. When the drive is reset, the security code will have been activated and the drive returns to Access Level L1. The value of Pr **0.34** will return to 0 in order to hide the security code. At this point, the only parameter that can be changed by the user is the Access Level Pr **0.49**.

Unlocking User Security

Select a read write parameter to be edited and press the *w* button, the upper display will now show CodE. Use the arrow buttons to set the

security code and press the M button.

With the correct security code entered, the display will revert to the parameter selected in edit mode.

If an incorrect security code is entered the display will revert to parameter view mode.

To lock the User Security again, set Pr **0.49** to Loc and press the reset button.

Disabling User Security.

Unlock the previously set security code as detailed above. Set Pr 0.34 to

0 and press the 🚺 button. The User Security has now been disabled, and will not have to be unlocked each time the drive is powered up to allow read / write access to the parameters.

5.10 Displaying parameters with nondefault values only

By entering 12000 in Pr **xx.00**, the only parameters that will be visible to the user will be those containing a non-default value. This function does not require a drive reset to become active. In order to deactivate this function, return to Pr **xx.00** and enter a value of 0.

Please note that this function can be affected by the access level enabled, refer to section 5.9 *Parameter access level and security* for further information regarding access level.

5.11 Displaying destination parameters only

By entering 12001 in Pr **xx.00**, the only parameters that will be visible to the user will be destination parameters. This function does not require a drive reset to become active. In order to deactivate this function, return to Pr **xx.00** and enter a value of 0.

Please note that this function can be affected by the access level enabled, refer to section 5.9 *Parameter access level and security* for further information regarding access level.

5.12 Serial communications

5.12.1 Introduction

The Unidrive SP has a standard 2-wire EIA485 interface (serial communications interface) which enables all drive set-up, operation and monitoring to be carried out with a PC or PLC if required. Therefore, it is possible to control the drive entirely by serial communications without the need for a SM-keypad or other control cabling. The drive supports two protocols selected by parameter configuration:

- Modbus RTU
- CT ANSI

Modbus RTU has been set as the default protocol, as it is used with the PC-tools commissioning software as provided on the CD ROM.

The serial communications port of the drive is a RJ45 socket, which is isolated from the power stage and the other control terminals (see section 4.12 *Serial communications connections* on page 91 for connection and isolation details).

The communications port applies a 2 unit load to the communications network.

EIA232 to EIA485 Communications

An external EIA232 hardware interface such as a PC cannot be used directly with the 2-wire EIA485 interface of the drive. Therefore a suitable converter is required.

A suitable EIA232 to EIA485 converter is the EPA isolated Comms cable.

When using the above converter or any other suitable converter with the Unidrive SP, it is recommended that no terminating resistors be connected on the network. It may be necessary to 'link out' the terminating resistor within the converter depending on which type is used. The information on how to link out the terminating resistor will normally be contained in the user information supplied with the converter.

5.12.2 Serial communications set-up parameters

The following parameters need to be set according to the system requirements.

0.3	0.35 {11.24} Serial mode											
R۷	N	Txt								US		
ţ			AnSI (rtU (₽			rtU (1)		

This parameter defines the communications protocol used by the 485 comms port on the drive. This parameter can be changed via the drive keypad, via a Solutions Module or via the comms interface itself. If it is changed via the comms interface, the response to the command uses

1	Safety	Product	Mechanical	Electrical	Getting	Basic	Running the	Ontimication	Smartcard	Onboard	Advanced	Technical	Diagnostics	UL Listing
	Information	Information	Installation	Installation	Started	Parameters	motor	Optimisation	operation	PLC	Parameters	Data	Diagnostics	Information

the original protocol. The master should wait at least 20ms before send a new message using the new protocol. (Note: ANSI uses 7 data bits, 1 stop bit and even parity; Modbus RTU uses 8 data bits, 2 stops bits and no parity.)

Comms value	String	Communications mode
0	AnSI	ANSI
1	rtU	Modbus RTU protocol
2	Lcd	Modbus RTU protocol, but with an SM- Keypad Plus only

ANSIx3.28 protocol

Full details of the CT ANSI communications protocol are the Unidrive SP Advanced User Guide.

Modbus RTU protocol

Full details of the implementation of Modbus RTU are given in the *Unidrive SP Advanced User Guide*.

Modbus RTU protocol, but with an SM-Keypad Plus only

This setting is used for disabling communications access when the SM-Keypad Plus is used as a hardware key. See the *Unidrive SP Advanced User Guide* for more details.

0.3	6 {1	1.25}	Serial	comm	unicati	ions	s ba	ud rate	e		
R١	N	Txt							US		
ţ				4), 960 8400 (7	00 (5), 7),	⇔			19200	(6)	

* only applicable to Modbus RTU mode

This parameter can be changed via the drive keypad, via a Solutions Module or via the comms interface itself. If it is changed via the comms interface, the response to the command uses the original baud rate. The master should wait at least 20ms before send a new message using the new baud rate.

NOTE

When using the Comms cable the available baud rate is limited to 19.2k baud.

0.3	0.37 {11.23} Serial communications address											
R١	W Txt US											
Û	0 to 247				⇒			1				

Used to define the unique address for the drive for the serial interface. The drive is always a slave.

Modbus RTU

When the Modbus RTU protocol is used addresses between 0 and 247 are permitted. Address 0 is used to globally address all slaves, and so this address should not be set in this parameter

ANSI

When the ANSI protocol is used the first digit is the group and the second digit is the address within a group. The maximum permitted group number is 9 and the maximum permitted address within a group is 9. Therefore, Pr **0.37** is limited to 99 in this mode. The value 00 is used to globally address all slaves on the system, and x0 is used to address all slaves of group x, therefore these addresses should not be set in this parameter.

6 Basic parameters (Menu 0)

Menu 0 is used to bring together various commonly used parameters for basic easy set up of the drive. All the parameters in menu 0 appear in other menus in the drive (denoted by {...}).

Menus 11 and 22 can be used to change most of the parameters in menu 0. Menu 0 can also contain up to 59 parameters by setting up menu 22.

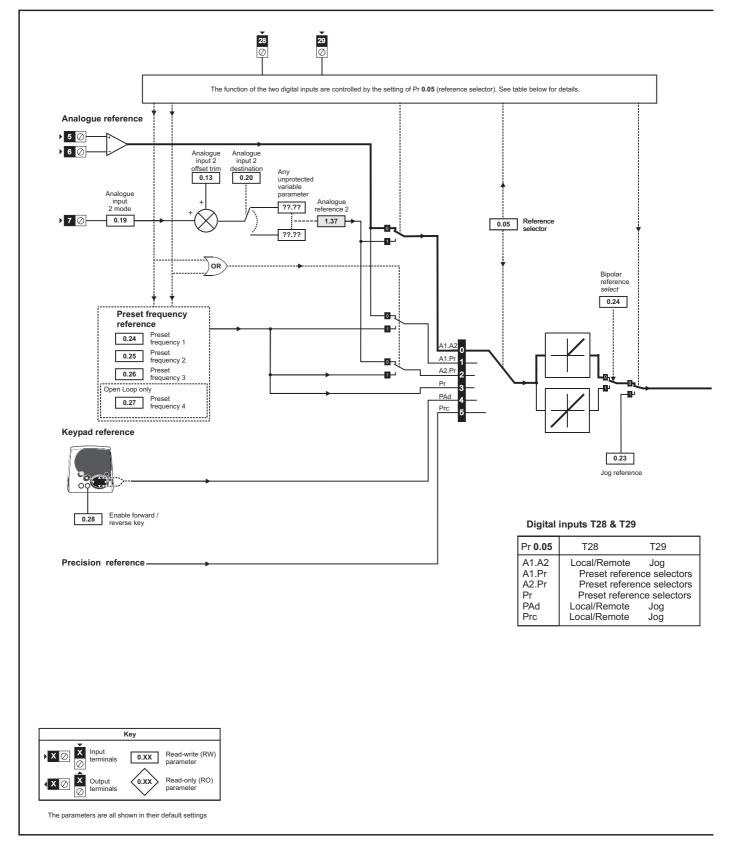
6.1 Single line descriptions

	_			Range(‡)			Default(⇔)							
	Parameter		OL	VT	sv	OL	VT	SV			Ту	ре		
0.00	xx.00	{ x.00 }		0 to 32,767			0		RW	Uni				
0.01	Minimum reference clamp	{1.07 }	±3,000.0Hz	±SPEED_LIM	IT_MAX Hz/rpm		0.0		RW	Bi			PT	
0.02	Maximum reference clamp	{1.06 }	0 to 3,000.0Hz	-	T_MAX Hz/rpm	EUR> 50.0 USA> 60.0	EUR> 1,500.0 USA> 1800.0	3,000.0	RW	Uni				US
0.03	Acceleration rate	{2.11 }	0.0 to 3,200.0 s/100Hz	s/1,0	3,200.000 00rpm	5.0	2.000	0.200	RW	Uni				US
0.04	Deceleration rate	{2.21 }	0.0 to 3,200.0 s/100Hz	s/1,0	3,200.000 00rpm	10.0	2.000	0.200	RW	Uni				US
0.05	Reference select	{1.14 }	A1.A2 (0), A1.	Pr (1), A2.Pr (2) Prc (5)	, Pr (3), PAd (4),		A1.A2 (0)			Txt		NC		US
0.06	Current limit	{4.07 }		Current_limit_n	nax %	165.0	175	5.0	RW	Uni		RA		US
0.07	OL> Voltage mode select	{5.14 }	Ur_S (0), Ur (1), Fd (2), Ur_Auto (3), Ur_I (4), SrE (5)			Ur_l (4)			RW	Txt				US
	CL> Speed controller P gain	{3.10 }		0.0000 to 6.	5535 1/rad s ⁻¹		0.01	00	RW	Uni				US
0.08	OL> Voltage boost	{5.15}	0.0 to 25.0% of motor rated voltage			Size 1 to 3: 3.0 Size 4 & 5: 2.0 Size 6: 1.0				Uni				US
	CL> Speed controller I gain	{3.11 }		0.00 to 6	55.35 1/rad		1.0	00	RW	Uni				US
0.09	OL> Dynamic V/F	{5.13}	OFF (0) or On (1)			0			RW					US
	CL> Speed controller D gain	{3.12}	100.000	0.00000 to	0.65535 (s)		0.00	000	RW	Uni	_		DT	US
0.10	OL> Estimated motor speed CL> Motor speed	{5.04}	±180,000 rpm	- Spood	max rpm				RO RO	Bi Bi		NC NC		<u> </u>
	OL & VT> Drive output frequency	{3.02} {5.01}	±Speed_fre	•					RO	Bi	FI			
0.11	SV> Drive encoder position	{3.29 }			0 to 65,535 1/2 ¹⁶ ths of a revolution				RO	Uni	FI	NC	PT	
0.12	Total motor current	{4.01 }	0 to	Drive_current_	max A				RO	Uni	FI	NC	PT	
0.13	OL & VT> Motor active current	{ 4.02 }	±Drive_curr						RO	Bi		NC		
	SV> Analogue input 1 offset trim	{7.07 }			±10.000 %			0.000	RW	Bi				US
0.14	Torque mode selector	{4.11}	0 to 1	0	to 4	Spe	Speed control mode (0)		RW	Uni				US
0.15	Ramp mode select	{2.04 }	FASt (0) Std (1) Std.hV (2)		St (0) d (1)	Std (1)			RW	Txt				US
0.16	OL> T28 and T29 auto- selection disable	{8.39 }	OFF (0) or On (1)			0			RW					US
	CL> Ramp enable	{2.02 }		OFF (0)	or On (1)		On	(1)	RW	Bit				US
0.17	OL> T29 digital input destination	{ 8.26 }	Pr 0.00 to Pr 21.51			Pr 6.31			RW	Uni	DE		PT	US
	CL> Current demand filter time constant	{4.12 }			25.0 ms		0.	0		Uni				US
0.18	Positive logic select	{ 8.29 }		OFF (0) or On (,		On (1)		RW	Bit			۲۲	US
0.19	Analogue input 2 mode	{7.11 }	4-20	0-0 (1), 4-20tr (2 (4), 20-4 (5), V0	OLt (6)		VOLt (6)			Txt				US
0.20	Analogue input 2 destination	{7.14 }		Pr 0.00 to Pr 21.			Pr 1.37		RW	Uni	DE		PT	US
0.21	Analogue input 3 mode	{7.15 }	4-20 (4), 2	0-0 (1), 4-20tr (2 0-4 (5), VOLt (6 th (8), th.diSp (s), th.SC (7), 9)		th (8)		RW	Txt			PT	US
0.22	Bipolar reference select	{1.10 }		OFF (0) or On (,		OFF (0)			Bit				US
0.23	Jog reference	{1.05 }	0 to 400.0 Hz		00.0 rpm		0.0			Uni				US
0.24	Pre-set reference 1	{1.21}		peed_limit_max	1		0.0		RW		<u> </u>		<u> </u>	US
0.25	Pre-set reference 2	{1.22 }		peed_limit_max	rpm		0.0		RW	Bi				US
0.26	OL> Pre-set reference 3	{ 1.23 }	±Speed_freq_ max Hz/rpm			0.0			RW					US
	CL> Overspeed threshold	{3.08 }		0 to 40	,000 rpm		0		RW	Uni				US
0.27	OL> Pre-set reference 4	{1.24 }	±Speed_freq_ max Hz/rpm			0.0			RW	Bi				US
	CL> Drive encoder lines per revolution	{ 3.34 }			50,000		1024	4096		Uni				US
0.28	Keypad fwd/rev key enable	{6.13 }		OFF (0) or On (1)		OFF (0)		RW	Bit				US

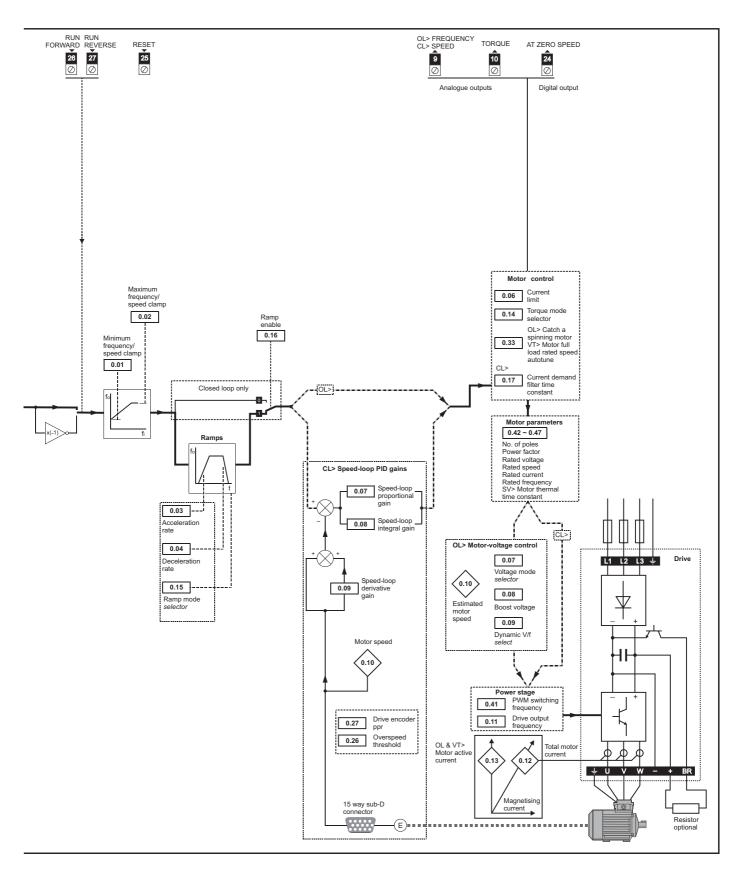
Safet Informa		Electrical stallation		Basic Runnin rameters mot		Smartcard operation		ranced Techr meters Dat		Diagn	ostics		isting mation
	Parameter			Range(≎)			Default(⇔)				Туре		
			OL	VT	SV	OL	VT	sv			71.		
0.29	SMARTCARD parameter data	{11.36 }		0 to 999			0		RO	Uni	N	C P	t us
0.30	Parameter cloning	{ 11.42 }	nonE (0), rEAd	d (1), Prog (2), A	utO (3), boot (4)		nonE (0)		RW	Txt	N	С	*
0.31	Drive rated voltage	{11.33}	200 (0),	400 (1), 575 (2)	,				RO	Txt		C P	
0.32	Drive rated current	{11.32}		0.00 to 9999.99	A		1		RO	Uni	N	C P	
0.33	OL> Catch a spinning motor	{6.09 }	0 to 3		I	0			RW	Uni			US
	VT> Rated rpm autotune	{5.16}		0 to 2			0		RW	Uni			US
0.34	User security code					0			RW	Uni	N	C P	-
0.35	Serial comms mode	{11.24}			. ,		rtU (1)		RW	Txt			US
0.36	Serial comms baud rate	{ 11.25 }	9600 (5760	1), 1200 (2), 24(5), 19200 (6), 38 0 (8) Modbus R 00 (9) Modbus R	8400 (7), FU only,	19200 (6)				Txt			US
0.37 Serial comms address {11.23} 0 to 247						1		RW	Uni			US	
0.38	Current loop P gain	{4.13 }		0 to 30,000		All voltage ratings: 20	20 575V drive: 180 690V drive: 215			Uni			US
0.39	Current loop I gain	{4.14 }		0 to 30,000		All voltage ratings 40			RW	Uni			US
0.40	Autotune	{5.12}	0 to 2	0 to 4	0 to 6		0		RW	Uni			
0.41	Maximum switching frequency	{5.18 }	3 (0), 4 (1),	6 (2), 8 (3), 12 (4), 16 (5) kHz	3 (0) 6 (2)			RW	Txt	R	A	US
0.42	No. of motor poles	{5.11}	0 to	60 (Auto to 120) pole)	0 (Auto)		6 POLE (3)	RW	Txt			US
0.43	OL & VT> Motor rated power factor	{5.10 }	0.000 t	o 1.000		0.	.850		RW	Uni			US
	SV> Encoder phase angle	{3.25}			0.0 to 359.9°			0.0	RW	Uni			US
0.44	Motor rated voltage	{5.09 }	0 to /	AC_voltage_set_	_max V	200V drive: 230 400V drive: EUR> 400, USA> 460 575V drive: 575 690V drive: 690			RW	Uni	R	А	US
0.45	OL & VT> Motor rated full load speed (rpm)	{5.08 }	0 to 180,000 rpm	0.00 to 40,000.00 rpm		EUR> 1,500 USA> 1,800			RW	Uni			US
	SV> Motor thermal time constant	{4.15 }			0.0 to 3000.0			20.0	RW	Uni			US
0.46	Motor rated current	{5.07 }	0 to	Rated_current_	max A	Drive	e rated current [11.32]	RW	Uni	R	A	US
0.47	Rated frequency	{5.06 }	0 to 3,000.0 Hz	0 to 1,250.0 Hz			R> 50.0 N> 60.0		RW	Uni			US
0.48	Operating mode selector	{11.31 }		n LP (1), CL VE ErVO (3), rEgEr		OPEn LP (1)	CL VECt (2)	SErVO (3)	RW	Txt	N	C P	г
0.49	Security status	{11.44}	L	1 (0), L2 (1), Loo	c (2)				RW	Txt		P	T US
0.50	Software version	{11.29}		1.00 to 99.99					RO	Uni	N	C P	r

* Modes 1 and 2 are not user saved, Modes 0, 3 and 4 are user saved

Key:


Coding	Attribute
OL	Open loop
CL	Closed loop vector and Servo
VT	Closed loop vector
SV	Servo
{X.XX}	Cloned advanced parameter
RW	Read/write: can be written by the user
RO	Read only: can only be read by the user
Bit	1 bit parameter: 'On' or 'OFF' on the display
Bi	Bipolar parameter
Uni	Unipolar parameter
Txt	Text: the parameter uses text strings instead of numbers.
FI	Filtered: some parameters which can have rapidly changing values are filtered when displayed on the drive keypad for easy viewing.
DE	Destination: This parameter selects the destination of an input or logic function.

Coding	Attribute
RA	Rating dependant: this parameter is likely to have different values and ranges with drives of different voltage and current ratings. This parameters is not transferred by SMARTCARDs when the rating of the destination drive is different from the source drive.
NC	Not cloned: not transferred to or from SMARTCARDs during cloning.
PT	Protected: cannot be used as a destination.
US	User save: parameter saved in drive EEPROM when the user initiates a parameter save.
PS	Power-down save: parameter automatically saved in drive EEPROM when the under volts (UV) trip occurs. With software version V01.08.00 and later, power-down save parameters are also saved in the drive when the user initiates a parameter save.


			_										
Safety	Product	Mechanical	Electrical	Getting	Basic	Running the	Ontimication	Smartcard	Onboard	Advanced	Technical	Diagnostics	UL Listing
Information	Information	Installation	Installation	Started	Parameters	motor	Optimisation	operation	PLC	Parameters	Data	Diagnostics	Information
									_				

Safety Product Mechanical Electrical Getting Basic Running the Information Information Installation Installation Started Parameters motor Optimisati	tion Smartcard operation	Onboard PLC	Advanced Parameters	Technical Data	Diagnostics	UL Listing Information
--	--------------------------	----------------	------------------------	-------------------	-------------	---------------------------

Figure 6-1 Menu 0 logic diagram

Safety Product Mechanical Electrical Getting Basic Running the Optimisati Information Information Installation Installation Started Parameters motor Optimisati	on Smartcard Onboard PLC Parameters Data Diagnostics UL Listing Information
---	---

Safety	Product	Mechanical	Electrical	Getting	Basic	Running the	Optimisation	Smartcard	Onboard	Advanced	Technical	Diagnostics	UL Listing
Information	Information	Installation	Installation	Started	Parameters	motor	Optimisation	operation	PLC	Parameters	Data	Diagnostics	Information

6.2 Full descriptions

6.2.1 Parameter x.00

0.0	00 {	x.00}	Param	eter ze	ero	-			
R١	N	Uni							
ţ	0 to 32,767							0	

Pr x.00 is available in all menus and has the following functions.

Value	Action
1000	Save parameters when under voltage is not active (Pr 10.16
1000	= 0) and low voltage DC supply is not active (Pr $6.44 = 0$).
1001	Save parameters under all conditions
1070	Reset all option modules
1233	Load standard defaults
1244	Load US defaults
1253	Change drive mode with standard defaults
1254	Change drive mode with US defaults
1255	Change drive mode with standard defaults (excluding menus 15 to 20)
1256	Change drive mode with US defaults (excluding menus 15 to 20)
Зууу*	Transfer drive EEPROM data to a SMART Card block number yyy
4ууу*	Transfer drive data as difference from defaults to SMART Card block number yyy
5ууу*	Transfer drive ladder program to SMART Card block number yyy
6ууу*	Transfer SMART Card data block number yyy to the drive
7ууу*	Erase SMART Card data block number yyy
8ууу*	Compare drive parameters with SMART Card data block number yyy
9555*	Clear SMARTCARD warning suppression flag
9666*	Set SMARTCARD warning suppression card
9777*	Clear SMARTCARD read-only flag
9888*	Set SMARTCARD read-only flag
9999*	Erase SMARTCARD data block 1 to 499
110zy	Transfer electronic nameplate parameters to/from drive from/ to encoder. See the <i>Unidrive SP Advanced User Guide</i> for more information on this function.
12000**	Display non-default values only
12001**	Display destination parameters only

* See Chapter 9 *SMARTCARD operation* on page 151 for more information of these functions.

** These functions do not require a drive reset to become active. All other functions require a drive reset to initiate the function.

6.2.2 Speed limits

0.0	01 {	1.07}	Minim	um ref	erence	cla	ımp			
R١	Ν	Bi						PT	US	
OL	€		±3,000.0Hz					0.0		
CL	$\hat{\mathbb{C}}$	±SPEE	D_LIMI	L_MAX	Hz/rpm	₽		0.0		

(When the drive is jogging, [0.01] has no effect.)

Open-loop

Set Pr **0.01** at the required minimum output frequency of the drive for both directions of rotation. The drive speed reference is scaled between Pr **0.01** and Pr **0.02**. **[0.01]** is a nominal value; slip compensation may cause the actual frequency to be higher.

Closed-loop

Set Pr **0.01** at the required minimum motor speed for both directions of rotation. The drive speed reference is scaled between Pr **0.01** and Pr **0.02**.

0.0)2 {	1.06}	Maxin	num re	ferenc	ce clamp					
R۱	Ν	Uni								US	
OL	ţ	(0 to 3,0	00.0Hz	Ζ	⇒ EUR> 50.0 USA> 60.0					
CL	· CL 介	SPEED_LIMIT_MAX Hz/				⇔	VT			1,500.0 1,800.0	
	Ť				-		sv		3,00	0.00	

(The drive has additional over-speed protection.)

Open-loop

Set Pr **0.02** at the required maximum output frequency for both directions of rotation. The drive speed reference is scaled between Pr **0.01** and Pr **0.02**. **[0.02]** is a nominal value; slip compensation may cause the actual frequency to be higher.

Closed-loop

Set Pr **0.02** at the required maximum motor speed for both directions of rotation. The drive speed reference is scaled between Pr **0.01** and Pr **0.02**.

For operating at high speeds see section 8.6 *High speed operation* on page 149.

6.2.3 Ramps, speed reference selection, current limit

0.0	03 {	2.11}	Accel	eratior	n rate					
R١	W	Uni						US		
OL	$\hat{\mathbf{r}}$	0.0 t	o 3,200).0 s/10	00Hz	₽		5.0		
CL	CI 1 0.000 to 3,200.000					⇔	VT	2.0	00	
_	v		s/1,00	0rpm			sv	0.2	200	

Set Pr 0.03 at the required rate of acceleration.

Note that larger values produce lower acceleration. The rate applies in both directions of rotation.

0.0	04 {2	2.21}	Decel	eratior	n rate					
R١	N	Uni							US	
OL	$\hat{\mathbf{v}}$	0.0 t	o 3,200).0 s/10	00Hz	₽		10.0		
СІ	• 0.000 to 3,200.000					⇔	VT	2.0	00	
-	v	* s/1,000rpm					sv	0.2	00	

Set Pr 0.04 at the required rate of deceleration.

Note that larger values produce lower deceleration. The rate applies in both directions of rotation.

0.0	05 {	1.14}	Refere	ence se	elector					
R۱	Ν	Txt					NC		US	
$\hat{\mathbb{Q}}$	0 to 5					⇒		A1.A2	(0)	

Use Pr 0.05 to select the required frequency/speed reference as follows:

Settir	ng	
A1.A2	0	Analogue input 1 OR analogue input 2 selectable by digital input, terminal 28
A1.Pr	1	Analogue input 1 OR preset frequency/speed selectable by digital input, terminal 28 and 29
A2.Pr	2	Analogue input 2 OR preset frequency/speed selectable by digital input, terminal 28 and 29
Pr	3	Pre-set frequency/speed
PAd	4	Keypad reference
Prc	5	Precision reference

Setting Pr **0.05** to 1, 2 or 3 will re-configure T28 and T29. Refer to Pr **8.39** (Pr **0.16** in OL) to disable this function.

Safety Product Mechanical Electrical Getting Basic Running the Optimisation Information Installation Installation Started Parameters motor Optimisation	tion Smartcard Onboard Advanced Parameters Data Diagnostics UL Listing Information
---	--

0.0)6 {	4.07}	Curre	nt Lim	it					
R۱	Ν	Uni				F	RA		US	
<u>ہ</u>	the Outpot limit may %					⇒	OL	16	5.0	
Ŷ	() 0 to Current_limit_max				IX 70	~	CL	17:	5.0	

Pr **0.06** limits the maximum output current of the drive (and hence maximum motor torque) to protect the drive and motor from overload.

Set Pr **0.06** at the required maximum torque as a percentage of the rated torque of the motor, as follows:

$$[0.06] = \frac{T_R}{T_{RATED}} \times 100 \,(\%)$$

Where:

TRRequired maximum torqueTRATEDMotor rated torque

Alternatively, set 0.06 at the required maximum active (torqueproducing) current as a percentage of the rated active current of the motor, as follows:

$$[0.06] = \frac{I_R}{I_{RATED}} \times 100 \,(\%)$$

Where:

I_R Required maximum active currentI_{RATED} Motor rated active current

6.2.4 Voltage boost, (open-loop), Speed-loop PID gains (closed-loop)

0.0	0.07 {5.14} Voltage mode selector										
R١	Ν	Txt								US	
OL	€	Ur_S Ur_	i (0), Ui Auto (3 SrE		d (2), (4),	₽			Ur_I (4	4)	

Open-loop

There are six voltage modes available, which fall into two categories, vector control and fixed boost. For further details, refer to section *Pr* 0.07 {5.14} Voltage mode on page 139.

0.0	0.07 (3.10) Speed controller proportional gain											
R١	Ν	Uni								US		
CL	ţ	0.	.0000 to 1/rao		35	Û			0.010	0		

Closed-loop

Pr **0.07** (**3.10**) operates in the feed-forward path of the speed-control loop in the drive. See Figure 11-4 on page 176 for a schematic of the speed controller. For information on setting up the speed controller gains, refer to Chapter 8 *Optimisation* on page 138.

0.0	0.08 {5.15} Low frequency voltage boost												
R١	Ν	Uni								US			
OL	ţ	0.0	to 25.0 rated \	% of m /oltage		Û		Si	ze 1 to : ze 4 & : Size 6:	5: 2.0			

Open-loop

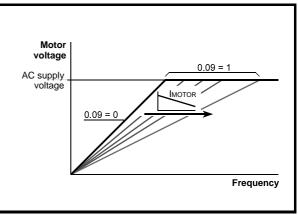
When 0.07~Voltage mode selector is set at Fd or SrE, set Pr 0.08~(5.15) at the required value for the motor to run reliably at low speeds.

Excessive values of Pr 0.08 can cause the motor to be overheated.

0.0	0.08 (3.11) Speed controller integral gain										
R۱	N	Uni								US	
CL	\hat{v}		0.00 to 1/r		5	⇔			1.00		

Closed-loop

Pr **0.08** (3.11) operates in the feed-forward path of the speed-control loop in the drive. See Figure 11-4 on page 176 for a schematic of the speed controller. For information on setting up the speed controller gains, refer to Chapter 8 *Optimisation* on page 138.


0.0	0.09 {5.13} Dynamic V/F / flux optimise select											
R١	Ν	Bit							US			
OL	ŷ	OFF (0) or On (1)				₽		OFF (0)			

Open-loop

Set Pr 0.09 (5.13) at 0 when the V/f characteristic applied to the motor is to be fixed. It is then based on the rated voltage and frequency of the motor.

Set Pr **0.09** at 1 when reduced power dissipation is required in the motor when it is lightly loaded. The V/f characteristic is then variable resulting in the motor voltage being proportionally reduced for lower motor currents. Figure 6-2 shows the change in V/f slope when the motor current is reduced.

Figure 6-2 Fixed and variable V/f characteristics

0.09 {3.12}			Speed controller differential feedback gain									
R١	N	Uni								US		
CL	₿	0.00	0000 to 0.65535(s)			₽			0.0000	00		

Closed-loop

Pr **0.09** (**3.12**) operates in the feedback path of the speed-control loop in the drive. See Figure 11-4 on page 176 for a schematic of the speed controller. For information on setting up the speed controller gains, refer to Chapter 8 *Optimisation* on page 138.

6.2.5 Monitoring

0.1	0.10 {5.04} Estimated motor s								
R	О	Bit	FI				NC	PT	
OL	\hat{v}		±180,000 rpm		l	⇔			

Open-loop

 $\mbox{Pr}\,0.10~(5.04)$ indicates the value of motor speed that is estimated from the following:

0.12 Post-ramp frequency reference

0.42 Motor - no. of poles

Safety Product Mechanical Electrical Getting Basic Running the Optimisa Information Installation Installation Started Parameters motor Optimisa	ion Smartcard Onboard Advanced Parameters Data Diagnostics UL Listing Information
---	---

0.1	0 {	3.02}	02} Motor speed							
R	C	Bi	FI					NC	PT	
CL	ţ	±S	±Speed_max rpm			₽				

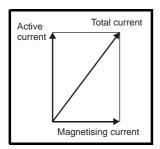
Closed-loop

Pr 0.10 (3.02) indicates the value of motor speed that is obtained from the speed feedback.

0.11 {	5.01}	Drive output frequency								
RO	Bi	FI					NC	PT		
OL VT	±Sp	eed_fre	eq_max	k Hz	₽					

Open-loop & closed loop vector

Pr 0.11 displays the frequency at the drive output.


0.1	0.11 {3.29} Drive encoder posi						١			
R	О	Uni	FI					NC	PT	
sv	ţ	0 to 65,535 1/2 ¹⁶ ths of a revolution			Û					

Servo

Pr 0.11 displays the position of the encoder in mechanical values of 0 to 65,535. There are 65,536 units to one mechanical revolution.

0.1	0.12 {4.01} Total motor current										
R	С	Uni	FI					NC	PT		
Û	(0 to Dri	Drive_current_max A								

Pr 0.12 displays the rms value of the output current of the drive in each of the three phases. The phase currents consist of an active component and a reactive component, which can form a resultant current vector as shown in the following diagram.

The active current is the torque producing current and the reactive current is the magnetising or flux-producing current.

0.13 {	4.02}	Motor	active	currer	nt			
RO	Bi	FI				NC	PT	
OL VT ĴĴ	±Dri	ve_cur	rent_m	ax A	Û			

Open-loop & closed loop vector

When the motor is being driven below its rated speed, the torque is proportional to [0.13].

0.13 {7.07} Analogue input 1 o						ffse	et tri	im			
RW	В	i								US	
SV (ţ	±10.000 %			₽			0.00	0		

Servo

Pr 0.13 can be used to trim out any offset in the user signal to analogue input 1.

6.2.6 Jog reference, Ramp mode selector, Stop and torque mode selectors

0.′	14 {	4.11}	Torqu	e mode	e selec	tor				
R۱	N	Uni							US	
OL	↕		0 to 1				Speed control (0)			
CL	\hat{v}		0 to 4			₽	Opt		1001 (0)	

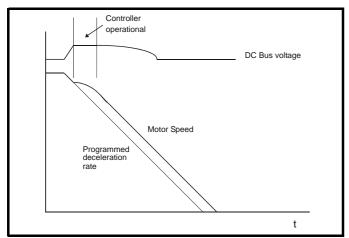
Pr 0.14 is used to select the required control mode of the drive as follo

וכ	10	J١	Ν	s	ļ

Setting	Open-Loop	Closed-Loop
0	Frequency control	Speed control
1	Torque control	Torque control
2		Torque control with speed override
3		Coiler/uncoiler mode
4		Speed control with torque feed-
т		forward

0.′	15 {	2.04}	Ramp	mode	select					
R١	N	Txt							US	
OL	ţ		FAS Std Std.h	(1)		仓		Std (*	1)	
CL	\hat{v}		FAS Std			⇔				

Pr 0.15 sets the ramp mode of the drive as shown below:


0: Fast ramp

Fast ramp is used where the deceleration follows the programmed deceleration rate subject to current limits. This mode must be used if a braking resistor is connected to the drive.

1: Standard ramp

Standard ramp is used. During deceleration, if the voltage rises to the standard ramp level (Pr 2.08) it causes a controller to operate, the output of which changes the demanded load current in the motor. As the controller regulates the link voltage, the motor deceleration increases as the speed approaches zero speed. When the motor deceleration rate reaches the programmed deceleration rate the controller ceases to operate and the drive continues to decelerate at the programmed rate. If the standard ramp voltage (Pr 2.08) is set lower than the nominal DC bus level the drive will not decelerate the motor, but it will coast to rest. The output of the ramp controller (when active) is a current demand that is fed to the frequency changing current controller (Open-loop modes) or the torque producing current controller (Closed-loop vector or Servo modes). The gain of these controllers can be modified with Pr 4.13 and Pr 4.14.

Safety Product Mechanical Electrical Getting Basic Running the Optimisation Information Information Installation Installation Started Parameters motor Optimisation	n Smartcard operation	Onboard PLC	Advanced Parameters	Technical Data	Diagnostics UL Listin Informatio
---	-----------------------	----------------	------------------------	-------------------	-------------------------------------

2: Standard ramp with motor voltage boost

This mode is the same as normal standard ramp mode except that the motor voltage is boosted by 20%. This increases the losses in the motor, dissipating some of the mechanical energy as heat giving faster deceleration.

0.16 {	8.39}	T28 ai	nd T29	auto-s	selectio	n disab	le		
RW	Bit							US	
OL ∁	0	FF (0)	or On (1)	₽		OFF (D)	

Open-loop

When Pr 0.16 is set to 0, digital inputs T28 and T29 are set up automatically with destinations according to the setting of the reference select Pr 0.05.

Ref	erence select 0.05	Terminal 28 function	Terminal 29 function
A1.A2 (0)	Reference selection by terminal input	Local/remote selector	Jog select
A1.Pr (1)	Analogue reference 1 or presets selected by terminal input	Preset select bit 0	Preset select bit 1
A2.Pr (2)	Analogue reference 2 or presets selected by terminal input	Preset select bit 0	Preset select bit 1
Pr (3)	Preset reference selected by terminal input	Preset select bit 0	Preset select bit 1
PAd (4)	Keypad reference selected	Local / remote selector	Jog select
Prc (5)	Precision reference selected	Local / remote selector	Jog select

Setting Pr **0.16** to 1 disables this automatic set-up, allowing the user to define the function of digital inputs T28 and T29.

0.1	16 {	{2.02} Ramp enable									
R١	Ν	Bit								US	
CL	\hat{v}	0	FF (0)	or On (1)	₽			On (1)	

Setting Pr **0.16** to 0 allows the user to disable the ramps. This is generally used when the drive is required to closely follow a speed reference which already contains acceleration and deceleration ramps.

0.1	17 {	7 {8.26} T29 digital input destination									
R١	Ν	Uni		DE					PT	US	
OL	$\hat{\mathbb{V}}$	Pr 0.00 to Pr 21.51			☆			Pr 6. 3	31		

Open-loop

Pr **0.17** sets the destination of digital input T29. This parameter is normally set-up automatically according to the reference selected by

 $\mathsf{Pr}~\textbf{0.05}.$ In order to manually set-up this parameter, the T28 and T29 auto-selection disable ($\mathsf{Pr}~\textbf{0.16})$ must be set.

0.′	0.17 {4.12} Current demand filter time constant										
R١	N	Uni								US	
CL	\hat{v}		0.0 to 2	5.0 ms		₽			0.0		

Closed-loop

A first order filter, with a time constant defined by Pr **0.17**, is provided on the current demand to reduce acoustic noise and vibration produced as a result of position feedback quantisation noise. The filter introduces a lag in the speed loop, and so the speed loop gains may need to be reduced to maintain stability as the filter time constant is increased.

0.1	18 {	8.29}	Positi	ve logi	c selec	:t				
R۱	N	Bit						PT	US	
ţ		OF	F (0) or	On (1)		₽		On (1)	

Pr **0.18** sets the logic polarity for digital inputs and digital outputs. This does not affect the drive enable input or the relay output.

0.1	19 {7.11} Analogue input 2 mode										
R١	Ν	Txt								US	
ţ			0 to	6		₽			VOLt (6)	

In modes 2 & 3 a current loop loss trip is generated if the current falls below 3mA.

In modes 2 & 4 the analogue input level goes to 0.0% if the input current falls below 4mA.

Pr value	Pr string	Mode	Comments
0	0-20	0 - 20mA	
1	20-0	20 - 0mA	
2	4-20.tr	4 - 20mA with trip on loss	Trip if I < 3mA
3	20-4.tr	20 - 4mA with trip on loss	Trip if I < 3mA
4	4-20	4 - 20mA with no trip on loss	0.0% if I ≤ 4mA
5	20-4	20 – 4mA with no trip on loss	100% if I ≤ 4mA
6	VOLt	Voltage mode	

0.2	0.20 {7.14} Analogue input 2 destination										
R۱	Ν	Uni		DE					PT	US	
€		Pr 0 .	.00 to F	Pr 21.5 ′	1	⇒			Pr 1.3	7	

Pr 0.20 sets the destination of analogue input 2.

Safety Product Mechanical Electrical Getting Basic Running the motor Optimisal Information Installation Installation Started Parameters motor Optimisal	sation Smartcard operation PLC Advanced Parameters Data Diagnostics UL Listing Information
--	--

0.2	0.21 {7.15} Analogue input 3 mode													
R١	V Txt PT US													
Û	0 to 9								th (8))				

Software V01.07.00 and later, the default is th (8)

Software V01.06.02 and earlier, the default is VOLt (6)

In modes 2 & 3 a current loop loss trip is generated if the current falls below 3mA.

In modes 2 & 4 the analogue input level goes to 0.0% if the input current falls below 4mA.

Pr value	Pr string	Mode	Comments
0	0-20	0 - 20mA	
1	20-0	20 - 0mA	
2	4-20.tr	4 - 20mA with trip on loss	Trip if I < 3mA
3	20-4.tr	20 - 4mA with trip on loss	Trip if I < 3mA
4	4-20	4 - 20mA with no trip on loss	0.0% if I ≤ 4mA
5	20-4	20 - 4mA with no trip on loss	100% if I ≤ 4mA
6	VOLt	Voltage mode	
7	th.SC	Thermistor mode with short- circuit detection	Th trip if R > 3K3 Th reset if R < 1K8 ThS trip if R < 50R
8	th	Thermistor mode with no short-circuit detection	Th trip if R > 3K3 Th reset if R < 1K8
9	th.diSp	Thermistor mode with display only and no trip	

0.22 {1.10} Bipolar reference select											
R١	N	Bit								US	
Û	OFF (0) or On (1)					₽			OFF (0)	

 $\mathsf{Pr}\,\mathbf{0.22}$ determines whether the reference is uni-polar or bi-polar as follows:

Pr 0.22	Function	
0	Unipolar speed/frequency reference	
1	Bipolar speed/frequency reference	\neq

0.2	23 {	1.05}	Jog re	ferenc	e					
R١	N	Uni							US	
OL	$\hat{\mathbb{C}}$		0 to 40		合		0.0			
CL	$\hat{\mathbf{v}}$	0	to 4,00	n	⇒		0.0			

Enter the required value of jog frequency/speed.

The frequency/speed limits affect the drive when jogging as follows:

Frequency-limit parameter	Limit applies
Pr 0.01 Minimum reference clamp	No
Pr 0.02 Maximum reference clamp	Yes

0.2	24 {	1.21}	Prese	t refere	ence 1					
R١	RW Bi								US	
Û	±Speed_limit_max rpm					⇒		0.0		

0.2	0.25 {1.22} Preset reference 2												
R۱	N	Bi								US			
ţ	±Speed_limit_max rpm								0.0				

0	.26 {	1.23}	Prese	t refere	ence 3					
R	RW Bi							US		
OL	· \$	±Spee	ed_freq_max Hz/rpm					0.0		

Open-loop

If the preset reference has been selected (see Pr 0.05), the speed at which the motor runs is determined by these parameters.

0.2	26 {	3.08}	Overs	peed t	hresho	ld				
R١	RW Uni								US	
CL	↕	0 to 40,000 rpm				Û		0		

Closed-loop

If the speed feedback (Pr **3.02**) exceeds this level in either direction, an overspeed trip is produced. If this parameter is set to zero, the overspeed threshold is automatically set to 120% x SPEED_FREQ_MAX.

0.2	27 {	1.24}	Preset	t refere	ence 4					
R۱	RW Bi								US	
OL	ţ	±Speed_freq_max Hz/rpm						0.0		

Open-loop

Refer to Pr 0.24 to Pr 0.26.

0.2	27 {	3.34}	Drive encoder lines per revolution										
R۱	Ν	Uni					US						
VT	$\hat{\mathbb{C}}$		0 to 5	0 000		仑			1024				
sv	\hat{v}			₽		4096							

Closed-loop

Enter in Pr 0.27 the number of lines per revolution of the drive encoder.

0.2	0.28 (6.13) Keypad fwd/rev key enable											
R۱	N	Bit								US		
€		OF	F (0) or	On (1)		⇔			OFF (0)		

When a keypad is fitted, this parameter enables the forward/reverse key.

0.2	29 {1	1.36}	SMAR	TCAR	D paraı	net	er d	lata			
R	0	D Uni						NC	PT	US	
\hat{U}	0 to 999					Û			0		

This parameter shows the number of the data block last transferred from a SMARTCARD to the drive.

Safety P Information Info		Mechanical Installation	Electrical Installation	Getting Started	Basic Parameters	Running the motor	Optimisation	Smartcard operation	Onboard PLC	Advanced Parameters	Technical Data	Diagnostics	UL Listing Information
------------------------------	--	----------------------------	----------------------------	--------------------	---------------------	-------------------	--------------	---------------------	----------------	------------------------	-------------------	-------------	---------------------------

0.3	.30 {11.42} Parameter cloning										
R١	Ν	Txt						NC		*	
ţ			0 to 4	4		⇔			nonE	(0)	

* Modes 1 and 2 are not user saved, Modes 0, 3 and 4 are user saved.

NOTE

If Pr **0.30** is equal to 1 or 2 this value is not transferred to the EEPROM or the drive. If Pr **0.30** is set to a 3 or 4 the value is transferred.

Pr String	Pr value	Comment
nonE	0	Inactive
rEAd	1	Read parameter set from the SMARTCARD
Prog	2	Programming a parameter set to the SMARTCARD
Auto	3	Auto save
boot	4	Boot mode

For further information, please refer to Chapter 9 *SMARTCARD* operation on page 151.

0.3	1 { 1	1.33}	Drive	rated v	oltage				
R	0	Txt					NC	PT	
Û	20	00V (0),	400V (690V		5V (2),	₽			

Pr 0.31 indicates the voltage rating of the drive.

0.3	32 {11.32} Drive rated current										
R	0	Uni						NC	PT		
ţ		0.00) to 9,9	99.99 A	١	⊳					

Pr **0.32** indicates the maximum continuous Heavy Duty current rating (which will allow for an overload of 150%).

0.	0.33 (6.09) Catch a spinning motor											
R١	W	Uni								US		
OL	$\hat{\mathbb{C}}$	0 to 3							0			

Open-loop

When the drive is enabled with Pr 0.33 = 0, the output frequency starts at zero and ramps to the required reference. When the drive is enabled when Pr 0.33 has a non-zero value, the drive performs a start-up test to determine the motor speed and then sets the initial output frequency to the synchronous frequency of the motor. Restrictions may be placed on the frequencies detected by the drive as follows:

Pr 0.33	Function
0	Disabled
1	Detect all frequencies
2	Detect positive frequencies only
3	Detect negative frequencies only

0.3	33 {	3 {5.16} Rated rpm autotune										
R١	Ν	Uni								US		
VT	\hat{v}		0 to	o 2		⇒			0			

Closed-loop vector

The motor rated full load rpm parameter (Pr **0.45**) in conjunction with the motor rated frequency parameter (Pr **0.46**) defines the full load slip of the motor. The slip is used in the motor model for closed-loop vector control. The full load slip of the motor varies with rotor resistance which can vary significantly with motor temperature. When Pr **0.33** is set to 1 or 2, the

drive can automatically sense if the value of slip defined by Pr **0.45** and Pr **0.46** has been set incorrectly or has varied with motor temperature. If the value is incorrect parameter Pr **0.45** is automatically adjusted. The adjusted value in Pr **0.45** is not saved at power-down. If the new value is required at the next power-up it must be saved by the user.

Automatic optimisation is only enabled when the speed is above 12.5% of rated speed, and when the load on the motor load rises above 62.5% rated load. Optimisation is disabled again if the load falls below 50% of rated load.

For best optimisation results the correct values of stator resistance (Pr **5.17**), transient inductance (Pr **5.24**), stator inductance (Pr **5.25**) and saturation breakpoints (Pr **5.29**, Pr **5.30**) should be stored in the relevant parameters. These values can be obtained by the drive during an autotune (see Pr **0.40** for further details).

Rated rpm auto-tune is not available if the drive is not using external position/speed feedback.

The gain of the optimiser, and hence the speed with which it converges, can be set at a normal low level when Pr **0.33** is set to 1. If this parameter is set to 2 the gain is increased by a factor of 16 to give faster convergence.

0.3	34 {11.30} User security code										
R۱	N	Uni						NC	PT		PS
ţ			0 to 9	99		⇔			0		

If any number other than 0 is programmed into this parameter, user security is applied so that no parameters except parameter **0.49** can be adjusted with the LED keypad. When this parameter is read via an LED keypad it appears as zero.

For further details refer to section 5.9.3 User Security on page 107.

0.3	0.35 {11.24} Serial comms mode											
R١	N	Txt								US		
ţ		AnSI (0), rtu (1), Lcd	(2)	⇒			rtU (1	1)		

This parameter defines the communications protocol used by the 485 comms port on the drive. This parameter can be changed via the drive keypad, via a Solutions Module or via the comms interface itself. If it is changed via the comms interface, the response to the command uses the original protocol. The master should wait at least 20ms before send a new message using the new protocol. (Note: ANSI uses 7 data bits, 1 stop bit and even parity; Modbus RTU uses 8 data bits, 2 stops bits and no parity.)

Comms value	String	Communications mode
0	AnSI	ANSI
1	rtU	Modbus RTU protocol
2	Lcd	Modbus RTU protocol, but with an SM- Keypad Plus only

ANSIx3.28 protocol

Full details of the CT ANSI communications protocol are the *Unidrive SP* Advanced User Guide.

Modbus RTU protocol

Full details of the implementation of Modbus RTU are given in the *Unidrive SP Advanced User Guide*.

Modbus RTU protocol, but with an SM-Keypad Plus only

This setting is used for disabling communications access when the SM-Keypad Plus is used as a hardware key. See the *Unidrive SP Advanced User Guide* for more details.

Safety Product Mechanical Electrical Getting Basic Running the Optimisati Information Installation Installation Started Parameters motor Optimisati	on Smartcard operation	Onboard PLC	Advanced Parameters	Technical Data	Diagnostics	UL Listing Information
---	------------------------	----------------	------------------------	-------------------	-------------	---------------------------

0.3	6 {1	1.25}	Serial	comm	s baud	l rat	e			
R١	Ν	Txt							US	
€				4), 960 8400 (7	0 (5), 7),	分		19200	(6)	

* only applicable to Modbus RTU mode

This parameter can be changed via the drive keypad, via a Solutions Module or via the comms interface itself. If it is changed via the comms interface, the response to the command uses the original baud rate. The master should wait at least 20ms before send a new message using the new baud rate.

0.3	37 {1	1.23}	Serial	addre	SS					
R١	N	Uni							US	
Û			0 to 2	47		♪		1		

Used to define the unique address for the drive for the serial interface. The drive is always a slave.

Modbus RTU

When the Modbus RTU protocol is used addresses between 0 and 247 are permitted. Address 0 is used to globally address all slaves, and so this address should not be set in this parameter

ANSI

When the ANSI protocol is used the first digit is the group and the second digit is the address within a group. The maximum permitted group number is 9 and the maximum permitted address within a group is 9. Therefore, Pr **0.37** is limited to 99 in this mode. The value 00 is used to globally address all slaves on the system, and x0 is used to address all slaves of group x, therefore these addresses should not be set in this parameter.

0.3	38 {	4.13}	Curre	nt loop	P gair	١				
R١	N	Uni							US	
OL	↕					Ŷ	All vo	ltage ra	atings: 2	20
CL	€		0 to 3	0,000		Ŷ	40 57	00V driv 0V driv 5V driv 0V driv	e: 150 e: 180	

0.3	39 {	4.14}	Curre	nt loop	l gain					
R١	N	Uni							US	
OL	$\hat{\mathbb{C}}$					Û	All vo	ltage ra	atings: 4	10
CL	ţ		0 to 3	0,000		Ŷ	400 575)V drive)V drive 5V drive)V drive	: 2,000 : 2,400	

These parameters control the proportional and integral gains of the current controller used in the open loop drive. The current controller either provides current limits or closed loop torque control by modifying the drive output frequency. The control loop is also used in its torque mode during mains loss, or when the controlled mode standard ramp is active and the drive is decelerating, to regulate the flow of current into the drive.

0.4	40 {	5.12}	Autot	une				
R١	Ν	Uni						
OL	\hat{v}		0 t	o 2	⇒		0	
VT	\hat{v}		0 t	o 4	⊳		0	
sv	\hat{v}		0 t	o 6	₽		0	

Open-Loop

There are two autotune tests available in open loop mode, a stationary and a rotating test. A rotating autotune should be used whenever possible, so the measured value of power factor of the motor is used by the drive.

- The stationary autotune can be used when the motor is loaded and it is not possible to remove the load from the motor shaft.
- A rotating autotune first performs a stationary autotune, before rotating the motor at ²/₃ base speed in the forward direction for several seconds. The motor must be free from load for the rotating autotune.

To perform an autotune, set Pr **0.40** to 1 for a stationary test or 2 for a rotating test, and provide the drive with both an enable signal (on terminal 31) and a run signal (on terminal 26 or 27).

Following the completion of an autotune test the drive will go into the inhibit state. The drive must be placed into a controlled disable condition before the drive can be made to run at the required reference. The drive can be put in to a controlled disable condition by removing the Secure Disable signal from terminal 31, setting the drive enable parameter Pr **6.15** to OFF (0) or disabling the drive via the control word (Pr **6.42** & Pr **6.43**).

For further information refer to section *Pr 0.40* {*5.12*} *Autotune* on page 138.

Closed-loop

There are three autotune tests available in closed loop vector mode, a stationary test, a rotating test and an inertia measurement test. A stationary autotune will give moderate performance whereas a rotating autotune will give improved performance as it measures the actual values of the motor parameters required by the drive. An inertia measurement test should be performed separately to a stationary or rotating autotune.

- The stationary autotune can be used when the motor is loaded and it is not possible to remove the load from the motor shaft.
- A rotating autotune first performs a stationary autotune, before rotating the motor at ²/₃ base speed in the forward direction for approximately 30 seconds. The motor must be free from load for the rotating autotune.
- The inertia measurement test can measure the total inertia of the load and the motor. This is used to set the speed loop gains (see *Speed loop gains*, below) and to provide torque feed forwards when required during acceleration. During the inertia measurement test the motor speed changes from 1/3 to 2/3 rated speed in the forward direction several times. The motor can be loaded with a constant torque load and still give an accurate result, however, non-linear loads and loads that change with speed will cause measurement errors.

To perform an autotune, set Pr **0.40** to 1 for a stationary test, 2 for a rotating test, or 3 for an inertia measurement test and provide the drive with both an enable signal (on terminal 31) and a run signal (on terminal 26 or 27).

Following the completion of an autotune test the drive will go into the inhibit state. The drive must be placed into a controlled disable condition before the drive can be made to run at the required reference. The drive can be put in to a controlled disable condition by removing the Secure Disable signal from terminal 31, setting the drive enable parameter Pr **6.15** to OFF (0) or disabling the drive via the control word (Pr **6.42** & Pr **6.43**).

Safety Information	Product Information	Mechanical Installation	Electrical Installation	Getting Started	Basic Parameters	Running the motor	Optimisation	Smartcard operation	Onboard PLC	Advanced Parameters	Technical Data	Diagnostics	UL Listing Information
								-					

Setting Pr **0.40** to 4 will cause the drive to calculate the current loop gains based on the previously measured values of motor resistance and inductance. The drive does apply any voltage to the motor during this test. The drive will change Pr **0.40** back to 0 as soon as the calculations are complete (approximately 500ms).

For further information refer to section *Pr 0.40* {5.12} *Autotune* on page 144.

Servo

There are five autotune tests available in servo mode, a short low speed test, a normal low speed test, an inertia measurement test, a stationary test and a minimal movement test. A normal low speed should be done where possible as the drive measures the stator resistance and inductance of the motor, and from these calculates the current loop gains. An inertia measurement test should be performed separately to a short low speed or normal low speed autotune.

- A short low speed test will rotate the motor by 2 electrical revolutions (i.e. up to 2 mechanical revolutions) in the forward direction, and measure the encoder phase angle. The motor must be free from load for this test.
- A normal low speed test will rotate the motor by 2 electrical revolutions (i.e. up to 2 mechanical revolutions) in the forward direction. This test measures the encoder phase angle and updates other parameters including the current loop gains. The motor must be free from load for this test.
- The inertia measurement test can measure the total inertia of the load and the motor. This is used to set the speed loop gains and to provide torque feed forwards when required during acceleration. During the inertia measurement test the motor speed changes from

 $^{1}/_{3}$ to $^{2}/_{3}$ rated speed in the forward direction several times. The motor can be loaded with a constant torque load and still give an accurate result, however, non-linear loads and loads that change with speed will cause measurement errors.

- The stationary test only measures the motor resistance and inductance, and updates the current loop gain parameters. This test does not measure the encoder phase angle so this test needs to be done in conjunction with either the short low speed or minimal movement tests.
- The minimal movement test will move the motor through a small angle to measure the encoder phase angle. This test will operate correctly when the load is an inertia, and although a small amount of cogging and stiction is acceptable, this test cannot be used for a loaded motor.

To perform an autotune, set Pr **0.40** to 1 for a short low speed test, 2 for a normal low speed test, 3 for an inertia measurement test, 4 for a stationary test or 5 for a minimal movement test, and provide the drive with both an enable signal (on terminal 31) and a run signal (on terminal 26 or 27).

Following the completion of an autotune test the drive will go into the inhibit state. The drive must be placed into a controlled disable condition before the drive can be made to run at the required reference. The drive can be put in to a controlled disable condition by removing the Secure Disable signal from terminal 31, setting the drive enable parameter Pr **6.15** to OFF (0) or disabling the drive via the control word (Pr **6.42** & Pr **6.43**).

Setting Pr **0.40** to 6 will cause the drive to calculate the current loop gains based on the previously measured values of motor resistance and inductance. The drive does apply any voltage to the motor during this test. The drive will change Pr **0.40** back to 0 as soon as the calculations are complete (approximately 500ms).

For further information refer to section *Pr 0.40 {5.12} Autotune* on page 146.

0.4	41 {	5.18}	Maxin	num sv	witchin	ng fi	requ	ency			
R١	Ν	Txt				F	RA			US	
OL		- (-)		- (-)		⇔			3 (0)		
CL	ţ	3 (0) 12	, 4 (1), 2 (4), 16	6 (2), 8 5 (5) kH	8 (3), Hz	⇔	VT		3 ((0)	
							sv		6 ((2)	

This parameter defines the required switching frequency. The drive may automatically reduce the actual switching frequency (without changing this parameter) if the power stage becomes too hot. A thermal model of the IGBT junction temperature is used based on the heatsink temperature and an instantaneous temperature drop using the drive output current and switching frequency. The estimated IGBT junction temperature is displayed in Pr **7.34**. If the temperature exceeds 145°C the switching frequency is reduced if this is possible (i.e >3kHz). Reducing the switching frequency reduces the drive losses and the junction temperature displayed in Pr **7.34** also reduces. If the load condition persists the junction temperature may continue to rise again above 145°C and the drive cannot reduce the switching frequency further the drive will initiate an 'O.ht1' trip. Every second the drive will attempt to restore the switching frequency to the level set in Pr **0.41**.

The full range of switching frequencies is not available on all ratings of Unidrive SP. See section 8.5 *Switching frequency* on page 149, for the maximum available switching frequency for each drive rating.

6.2.7 Motor parameters

0.4	12 {	5.11}	No. of	motor	[,] poles					
R١	N	Txt							US	
OL	\hat{v}					₽		Auto (0)	
CL	介	0 to 60) (Auto	to 120	Pole)	⇔	VT	Auto	o (0)	
ŰL	v					,	sv	6 POI	_E (3)	

Open-loop

This parameter is used in the calculation of motor speed, and in applying the correct slip compensation. When auto is selected, the number of motor poles is automatically calculated from the rated frequency (Pr **0.47**) and the rated full load rpm (Pr **0.45**). The number of poles = 120 * rated frequency / rpm rounded to the nearest even number.

Closed-loop vector

This parameter must be set correctly for the vector control algorithms to operate correctly. When auto is selected, the number of motor poles is automatically calculated from the rated frequency (Pr **0.47**) and the rated full load rpm (Pr **0.45**). The number of poles = $120 \times 120 \times 120$

Servo

This parameter must be set correctly for the vector control algorithms to operate correctly. When auto is selected the number of poles is set to 6.

0.4	3 {!	5.10}	Motor	rated	power	factor			
RV	V	Uni						US	
OL	\hat{v}		0.000 te	o 1 000	h	₽	0.85	0	
VT	\hat{v}		0.000 1	0 1.000)	⇒	0.850	0	

The power factor is the true power factor of the motor, i.e. the angle between the motor voltage and current.

Open-loop vector

The power factor is used in conjunction with the motor rated current (Pr **0.46**) to calculate the rated active current and magnetising current of the motor. The rated active current is used extensively to control the drive, and the magnetising current is used in vector mode Rs compensation. It is important that this parameter is set up correctly.

Safety Information	Product Information	Mechanical Installation	Electrical Installation	Getting Started	Basic Parameters	Running the motor	Optimisation	Smartcard operation	Onboard PLC	Advanced Parameters	Technical Data	Diagnostics	UL Listing Information
-----------------------	------------------------	----------------------------	----------------------------	--------------------	---------------------	-------------------	--------------	---------------------	----------------	------------------------	-------------------	-------------	---------------------------

This parameter is obtained by the drive during a rotational autotune. If a stationary autotune is carried out, then the nameplate value should be entered in Pr **0.43**.

Closed-loop vector

If the stator inductance (Pr **5.25**) contains a non-zero value, the power factor used by the drive is continuously calculated and used in the vector control algorithms (this will not update Pr **0.43**).

If the stator inductance is set to zero (Pr **5.25**) then the power factor written in Pr **0.43** is used in conjunction with the motor rated current and other motor parameters to calculate the rated active and magnetising currents which are used in the vector control algorithm.

This parameter is obtained by the drive during a rotational autotune. If a stationary autotune is carried out, then the nameplate value should be entered in Pr 0.43.

0.4	0.43 (3.25) Encoder phase angle										
R١	RW Uni									US	
sv					₽			0.0			

The phase angle between the rotor flux in a servo motor and the encoder position is required for the motor to operate correctly. If the phase angle is known it can be set in this parameter by the user. Alternatively the drive can automatically measure the phase angle by performing a phasing test (see autotune in servo mode Pr **0.40**). When the test is complete the new value is written to this parameter. The encoder phase angle can be modified at any time and becomes effective immediately. This parameter has a factory default value of 0.0, but is not affected when defaults are loaded by the user.

0.4	44 {	5.09}	Motor	rated	voltage	9					
R۱	Ν	Uni				R	A			US	
ţ	0	to AC_	voltage	_set_n	nax V	Ŷ		400V 57	0V drive drive: E U 5V drive 0V drive	UR> 4 SA> 46 e: 575	

Open-loop & Closed-loop Vector

Enter the value from the rating plate of the motor.

0.4	45 {	5.08}	Motor	rated	full loa	ad s	pee	d (rpm)			
R١	V Uni								US		
OL	ţ	0	to 180,	000 rp	m	₽			UR> 1, JSA> 1,		
νт	ţ	0.00	0 to 40,000.00 rpm						IR> 1,4 SA> 1,7		

Open-loop

This is the speed at which the motor would rotate when supplied with its base frequency at rated voltage, under rated load conditions (= synchronous speed - slip speed). Entering the correct value into this parameter allows the drive to increase the output frequency as a function of load in order to compensate for this speed drop.

Slip compensation is disabled if Pr 0.45 is set to 0 or to synchronous speed, or if Pr 5.27 is set to 0.

If slip compensation is required this parameter should be set to the value from the rating plate of the motor, which should give the correct rpm for a hot machine. Sometimes it will be necessary to adjust this when the drive is commissioned because the nameplate value may be inaccurate. Slip compensation will operate correctly both below base speed and within the field weakening region. Slip compensation is normally used to correct for the motor speed to prevent speed variation with load. The rated load rpm can be set higher than synchronous speed to deliberately introduce speed droop. This can be useful to aid load sharing with mechanically coupled motors.

Closed loop vector

Rated load rpm is used with motor rated frequency to determine the full load slip of the motor which is used by the vector control algorithm. Incorrect setting of this parameter can result in the following:

- Reduced efficiency of motor operation
- Reduction of maximum torque available from the motor
- Failure to reach maximum speed
- Over-current trips
- Reduced transient performance

Inaccurate control of absolute torque in torque control modes

The nameplate value is normally the value for a hot machine, however, some adjustment may be required when the drive is commissioned if the nameplate value is inaccurate. The rated full load rpm can be optimised by the drive (For further information, refer to section 8.1.3 *Closed loop vector motor control* on page 143).

0.45 {4.15} Motor thermal time constant											
R١	N	Uni		US							
sv	ţ		0 to 3	000.0		⇒			20.0		

Servo

Pr 0.45 is the motor thermal time constant of the motor, and is used (along with the motor rated current Pr 0.46, and total motor current Pr 0.12) in the thermal model of the motor in applying thermal protection to the motor.

Setting this parameter to 0 disables the motor thermal protection.

For further details, refer to section 8.4 *Motor thermal protection* on page 148.

0.46 {5.07} Motor rated current											
R۱	N	V Uni RA US									
ţ	0 to Rated_current_max A					₽	[Drive ra	ted cur	rent [11	.32]

Enter the name-plate value for the motor rated current.

0.47 {5.06} Rated frequency

0.4	0.47 (500) Rated nequency												
R۱	Ν	Uni								US			
OL	\hat{v}		0 to 3,000.0Hz					EUR> 50.0, USA> 60.0					
VT	ţ	(0 to 1,250.0Hz					EUR>	50.0, L	JSA> 60	0.0		

Open-loop & Closed-loop vector

Enter the value from the rating plate of the motor.

6.2.8 Operating-mode selection

0.4	18 {1	1.31}	Opera	ting m	ode se	lec	tor			
R	W	Txt	NC					PT		
							OL		1	
$\hat{\mathbb{V}}$			1 to	4		⇔	VT	:	2	
							sv	:	3	

The settings for Pr 0.48 are as follows:

Setting		Operating mode
OPEn LP	1	Open-loop
CL VECt	2	Closed-loop Vector
SerVO	3	Servo
rEgEn	4	Regen

This parameter defines the drive operating mode. Pr **xx.00** must be set to 1253 (European defaults) or 1254 (USA defaults) before this parameter can be changed. When the drive is reset to implement any change in this parameter, the default settings of all parameters will be

Safety Product Mechanical Electrical Getting Basic Running the Optimisation Smartcard Onboard Advanced Technical Diagr Information Information Installation Installation Started Parameters motor Optimisation Smartcard Onboard Advanced Technical Diagr	Diagnostics UL Listing Information
---	---------------------------------------

set according to the drive operating mode selected and saved in memory.

6.2.9 Status information

0.4	19 { 1	1.44}	Secur	ity stat	us					
R١	N	Txt						PT	US	
Û			0 to 2	2		Û		0		

This parameter controls access via the drive LED keypad as follows:

Value	String	Action
0	L1	Only menu 0 can be accessed
1	L2	All menus can be accessed
2	Loc	Lock user security when drive is reset. (This parameter is set to L1 after reset.)

The LED keypad can adjust this parameter even when user security is set.

0.5	0.50 {11.29} Software version number										
R	0	D Uni NC PT									
ţ	1.00 to 99.99			⇒							

The parameter displays the software version of the drive.

Safety	Product	Mechanical	Electrical	Getting	Basic	Running	Optimisation	Smartcard	Onboard	Advanced	Technical	Diagnostics	UL Listing
Information	Information	Installation	Installation	Started	Parameters	the motor	Optimisation	operation	PLC	Parameters	Data	Diagnostics	Information

7 Running the motor

This chapter takes the new user through all the essential steps to running a motor for the first time, in each of the possible operating modes.

For information on tuning the drive for the best performance, see Chapter 8 *Optimisation*.

Ensure that no damage or safety hazard could arise from the motor starting unexpectedly.

The values of the motor parameters affect the protection of the motor.

The default values in the drive should not be relied upon. It is essential that the correct value is entered in Pr **0.46** *Motor rated current*. This affects the thermal protection of the motor.

If the keypad mode has been used previously, ensure that

the keypad reference has been set to 0 using the the buttons as if the drive is started using the keypad it will run to

CAUTION the speed defined by the keypad reference (Pr 0.35).

If the intended maximum speed affects the safety of the machinery, additional independent over-speed protection must be used.

7.1 Quick start Connections

7.1.1 Basic requirements

This section shows the basic connections which must be made for the drive to run in the required mode. For minimal parameter settings to run in each mode please see the relevant part of section 7.3 *Quick Start commissioning* on page 130.

Table 7-1 Minimum control connection requirements for each control mode

Drive control method	Requirements
Terminal mode	Drive Enable Speed reference Run forward or run reverse command
Keypad mode	Drive Enable
Serial communications	Drive Enable Serial communications link

Table 7-2 Minimum control connection requirements for each mode of operation

Operating mode	Requirements
Open loop mode	Induction motor
Closed loop vector mode	Induction motor with speed feedback
Closed loop servo mode	Permanent magnet motor with speed and position feedback

Speed feedback

Suitable devices are:

- Incremental encoder (A, B or F, D with or without Z)
- Incremental encoder with forward and reverse outputs (F, R with or without Z)
- SINCOS encoder (with, or without Stegmann Hiperface, EnDat or SSI communications protocols)
- EnDat absolute encoder

Speed and position feedback

Suitable devices are:

- Incremental encoder (A, B or F, D with or without Z) with commutation signals (U, V, W)
- Incremental encoder with forward and reverse outputs (F, R with or without Z) and commutation outputs (U, V, W)
- SINCOS encoder (with Stegmann Hiperface, EnDat or SSI communications protocols)
- EnDat absolute encoder

For Solutions Module terminal information see section 11.15 *Menus 15, 16 and 17: Solutions Module set-up* on page 217 or the appropriate Solutions Module option user guide.

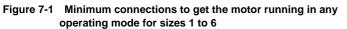
7.2 Changing the operating mode

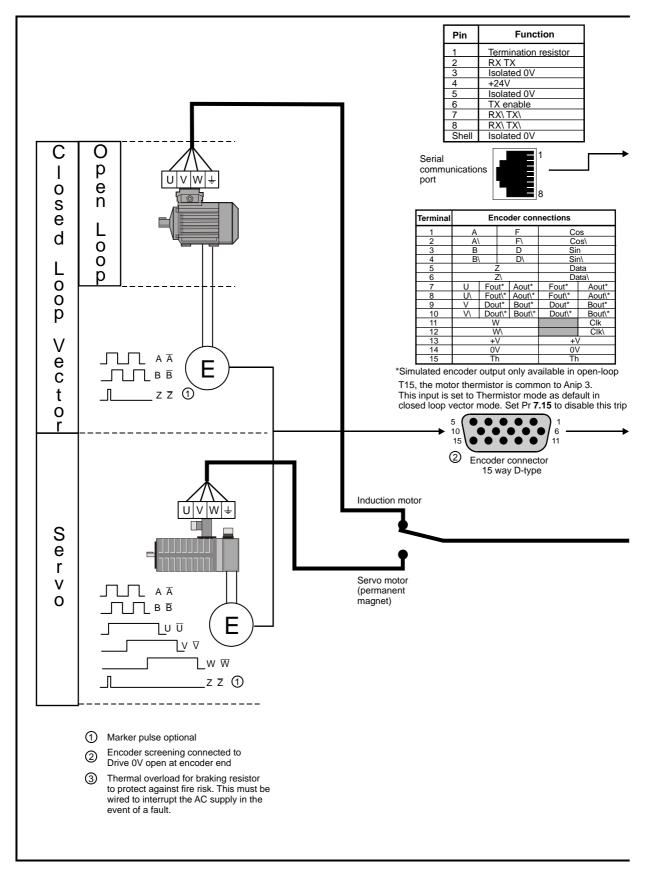
Changing the operating mode returns all parameters to their default value, including the motor parameters. (Pr **0.49** and Pr **0.34** are not affected by this procedure.)

Procedure

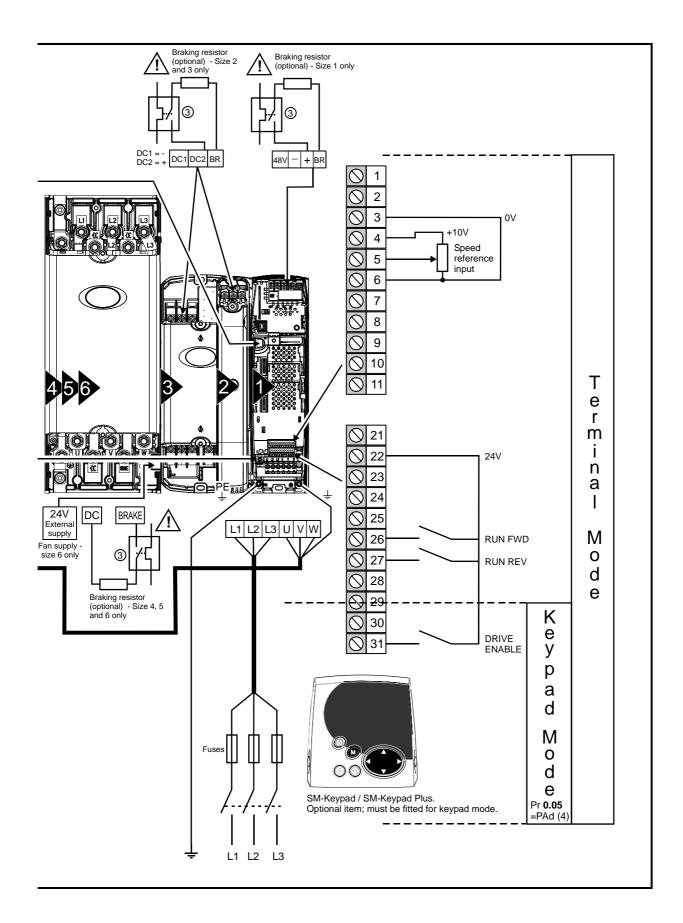
Use the following procedure only if a different operating mode is required:

- Enter either of the following values in Pr xx.00, as appropriate: 1253 (Europe, 50Hz AC supply frequency) 1254 (USA, 60Hz AC supply frequency)
- 2. Change the setting of Pr 0.48 as follows:

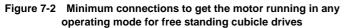

Pr 0.48 setting		Operating mode
0855 LP	1	Open-loop
QH8 CL UECE	2	Closed-loop Vector
048 56-00	3	Closed-loop Servo
048 FESEn	4	Regen (See the <i>Unidrive SP Regen</i> <i>Installation Guide</i> for more information about operating in this mode)

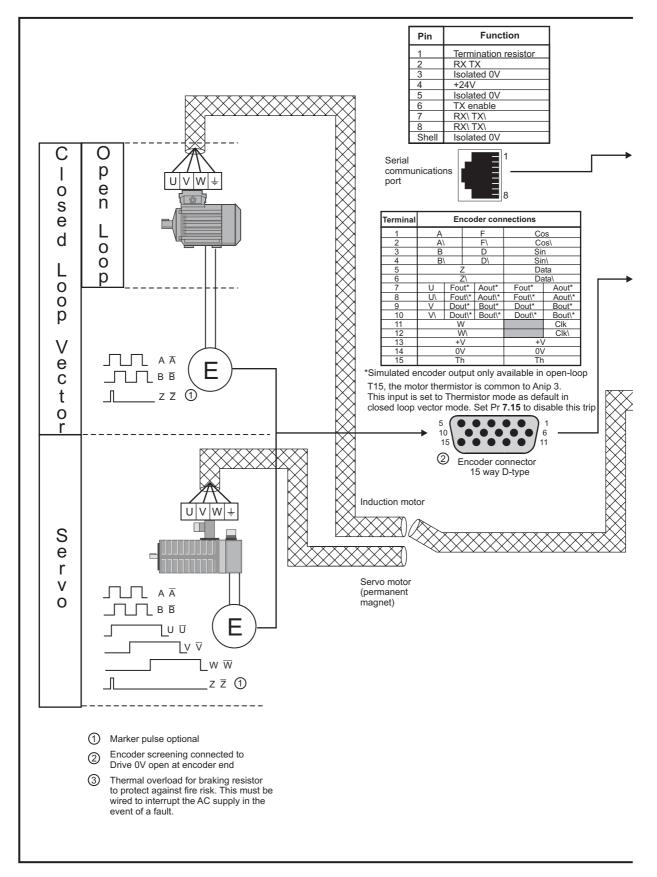

The figures in the second column apply when serial communications are used.

- 3. Either:
- Toggle the reset digital input
- Carry out a drive reset through serial communications by setting Pr 10.38 to 100 (ensure that Pr. xx.00 returns to 0).

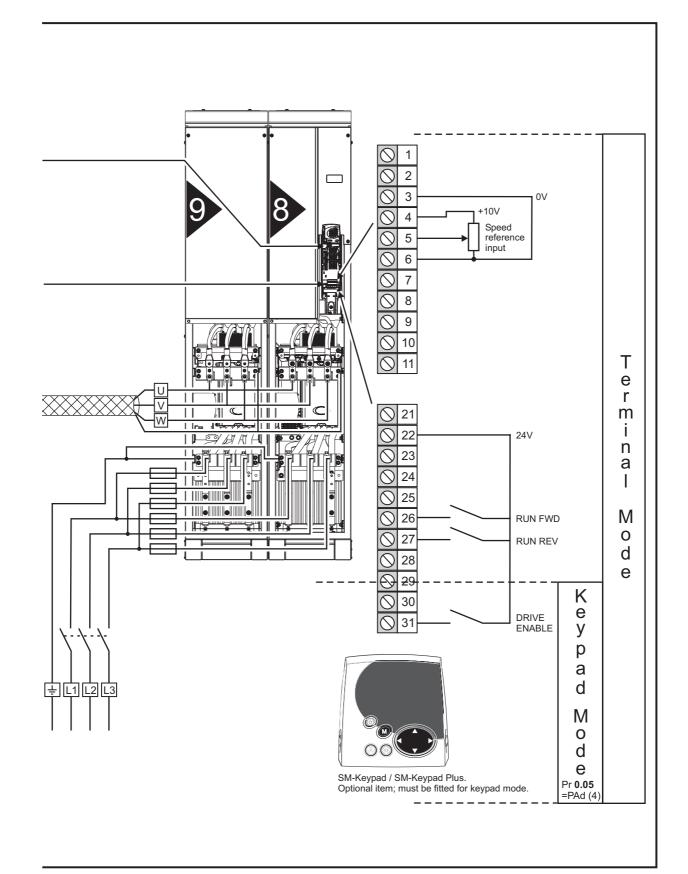

Safety	Product	Mechanical	Electrical	Getting	Basic	Running	Ontimication	Smartcard	Onboard	Advanced	Technical	Diagnostics	UL Listing
Information	Information	Installation	Installation	Started	Parameters	the motor	Optimisation	operation	PLC	Parameters	Data	Diagnostics	Information

Safety	Product	Mechanical Installation	Electrical Installation	Getting	Basic	Running	Optimisation	Smartcard	Onboard	Advanced	Technical	Diagnostics	UL Listing
Information	Information	Installation	Installation	Started	Parameters	the motor		operation	PLC	Parameters	Data	-	Information





Safety	Product	Mechanical	Electrical	Gettina	Basic	Runnina	• • • •	Smartcard	Onboard	Advanced	Technical	D :	UL Listina
	Information	Installation	Installation	Started	-	the meter	Optimisation	operation	DI C	Doromotoro	Data	Diagnostics	Information
mormation	Information	Installation	Installation	Starteu	Parameters	the motor		operation	PLC	Parameters	Dala	-	Information



	Safety	Product	Mechanical	Electrical	Getting	Basic	Running	Optimisation	Smartcard	Onboard	Advanced	Technical	Diagnostics	UL Listing
Inf	formation	Information	Installation	Installation	Started	Parameters	the motor	Optimisation	operation	PLC	Parameters	Data	Diagnostics	Information

1	Safety	Product	Mechanical	Electrical	Getting	Basic	Running	Smartcard	Onboard	Advanced	Technical	Diagnostics	UL Listing
	Information	Information	Installation	Installation	Started	Parameters	the motor	operation	PLC	Parameters	Data	Diagnostics	Information

7.3 Quick Start commissioning

7.3.1 Open loop

Action	Detail	
Before power-up	 Ensure: The drive enable signal is not given (terminal 31) Run signal is not given Motor is connected 	×
Power-up the drive	Ensure: • Drive displays 'inh' If the drive trips, see Chapter 13 <i>Diagnostics</i> on page 275.	
Enter motor nameplate details	 Enter: Motor rated frequency in Pr 0.47 (Hz) Motor rated current in Pr 0.46 (A) Motor rated speed in Pr 0.45 (rpm) Motor rated voltage in Pr 0.44 (V) - check if	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Set maximum frequency	Enter: • Maximum frequency in Pr 0.02 (Hz)	0.02
Set acceleration / deceleration rates	 Enter: Acceleration rate in Pr 0.03 (s/100Hz) Deceleration rate in Pr 0.04 (s/100Hz) (If braking resistor fitted, set Pr 0.15 = FAST. Also ensure Pr 10.30 and Pr 10.31 are set correctly, otherwise premature 'It.br' trips may be seen.) 	100Hz
Autotune	 Unidrive SP is able to perform either a stationary or a rotating autotune. The motor must be at a standstill before an autotune is enabled. A rotating autotune should be used whenever possible so the measured value of power factor of the motor is used by the drive. A rotating autotune will cause the motor to accelerate up to ²/₃ base speed in the direction selected regardless of the reference provided. Once complete the motor will coast to a stop. The run signal must be removed before the drive can be made to run at the required reference. The drive can be stopped at any time by removing the run signal or removing the drive enable. A stationary autotune can be used when the motor is loaded and it is not possible to uncouple the load from the motor shaft. A stationary autotune measures the stator resistance of the motor and the voltage offset in the drive. These are required for good performance in vector control modes. A stationary autotune does not measure the power factor of the motor so the value on the motor is uncoupled. A rotating autotune first performs a stationary autotune measures the power factor of the motor so the value on the motor is uncoupled. A rotating autotune first performs a stationary autotune measures the power factor of the motor. To perform an autotune: Set Pr 0.40 = 1 for a stationary autotune or set Pr 0.40 = 2 for a rotating autotune Close the Drive Enable signal (terminal 31). The drive will display 'rdY'. Close the Drive Enable signal (terminal 26 or 27). The lower display will flash 'Auto' and 'tunE' alternatively, while the drive is performing the autotune. Wait for the drive to display 'rdY' or 'inh' and for the motor to come to a standstill. If the drive trips, see Chapter 13 <i>Diagnostics</i> on page 275. Remove the drive enable and run signal from the drive. 	
Save parameters	Enter 1000 in Pr xx.00 Press the red reset button or toggle the reset digital input (ensure Pr xx.00 returns to 0)	
Run	Drive is now ready to run	*

1	Safety	Product	Mechanical	Electrical	Getting	Basic	Running	Optimisation	Smartcard	Onboard	Advanced	Technical	Diagnostics	UL Listing
	Information	Information	Installation	Installation	Started	Parameters	the motor	Optimisation	operation	PLC	Parameters	Data	Diagnostics	Information

7.3.2 RFC mode

Induction motor

Induction moto	Detail	
ACIION		
Before power-up	 Ensure: Drive Enable signal is not given (terminal 31) Run signal is not given Motor and feedback device are connected 	\times
Power-up the drive	Ensure: • Drive displays 'inh' If the drive trips, see Chapter 13 <i>Diagnostics</i> on page 275.	<u> </u>
Select RFC mode and disable encoder wire-break trip	 Set Pr 3.24 = 1 to select RFC mode Set Pr 3.40 = 0 	
Enter motor nameplate details	 Enter: Motor rated frequency in Pr 0.47 (Hz) Motor rated current in Pr 0.46 (A) Motor rated speed (base speed - slip speed) in Pr 0.45 (rpm) Motor rated voltage in Pr 0.44 (V) - check if 人 or △ connection 	
Set maximum speed	Enter: • Maximum speed in Pr 0.02 (rpm)	0.02
Set acceleration / deceleration rates	 Enter: Acceleration rate in Pr 0.03 (s/1000rpm) Deceleration rate in Pr 0.04 (s/1000rpm) (If braking resistor fitted, set Pr 0.15 = FAST. Also ensure Pr 10.30 and Pr 10.31 are set correctly, otherwise premature 'It.br' trips may be seen.) 	1000pm
Autotune	 Unidrive SP is able to perform either a stationary or a rotating autotune. The motor must be at a standstill before an autotune is enabled. A stationary autotune will give moderate performance whereas a rotating autotune will give improved performance as it measures the actual values of the motor parameters required by the drive. A rotating autotune will cause the motor to accelerate up to ²/₃ base speed in the direction selected regardless of the reference provided. Once complete the motor will coast to a stop. The run signal must be removed before the drive can be made to run at the required reference. WARNING A stationary autotune can be stopped at any time by removing the run signal or removing the drive enable. A stationary autotune can be used when the motor is loaded and it is not possible to uncouple the load from the motor shaft. The stationary autotune measures the stator resistance and transient inductance of the motor. These are used to calculate the current loop gains, and at the end of the test the values in Pr 0.38 and Pr 0.39 are updated. A stationary autotune does not measure the power factor of the motor so the value on the motor nameplate must be entered into Pr 0.4 rotating autotune should only be used if the motor is uncoupled. A rotating autotune first performs a stationary autotune before rotating the motor and calculates the power factor. To perform an autotune: Set Pr 0.40 = 1 for a stationary autotune or set Pr 0.40 = 2 for a rotating autotune Close the Drive Enable signal (terminal 31). The drive will display 'rdY' Close the run signal (terminal 26 or 27). The lower display will flash 'Auto' and 'tunE' alternatively, while the drive tips, see Chapter 13 <i>Diagnostics</i> on page 275. Remove the drive enable and run signal from the drive. 	R _i CL _i T Nm Saturation break- points N rpm
Save parameters	Enter 1000 in Pr xx.00 Press the red reset button or toggle the reset digital input (ensure Pr xx.00 returns to 0)	
Run	Drive is now ready to run	* <u>·</u>

1	Safety	Product	Mechanical	Electrical	Getting	Basic	Running	Optimisation	Smartcard	Onboard	Advanced	Technical	Diagnostics	UL Listing
	Information	Information	Installation	Installation	Started	Parameters	the motor	Optimisation	operation	PLC	Parameters	Data	Diagnostics	Information

7.3.3 **Closed loop vector mode**

Induction motor with incremental encoder feedback For simplicity only an incremental quadrature encoder will be considered here. For information on setting up one of the other supported speed feedback devices, refer to section 7.5 Setting up a feedback device on page 134.

Action	Detail	
Before power-up	 Ensure: Drive Enable signal is not given (terminal 31) Run signal is not given Motor and feedback device are connected 	\times
Power-up the drive	 Ensure: Drive displays 'inh' If the drive trips, see Chapter 13 <i>Diagnostics</i> on page 275. 	Ţ
Set motor feedback parameters	 Incremental encoder basic set-up Enter: Drive encoder type in Pr 3.38 = Ab (0): Quadrature encoder Encoder power supply in Pr. 3.36 = 5V (0), 8V (1) or 15V (2). If Ab encoder voltage is greater than 5V, then the termination resistors must be disabled Pr 3.39 to 0. Setting the encoder voltage supply too high for the encoder could result in damage to the feedback device. Drive encoder Lines Per Revolution (LPR) in Pr 3.34 (set according to encoder) Drive encoder termination resistor setting in Pr. 3.39: 0 = A-A, B-B, Z-Z termination resistors enabled, Z-Z termination resistors disabled 1 = A-A, B-B, Z-Z termination resistors enabled 	
Enter motor nameplate details	 Enter: Motor rated frequency in Pr 0.47 (Hz) Motor rated current in Pr 0.46 (A) Motor rated speed (base speed - slip speed) in Pr 0.45 (rpm) Motor rated voltage in Pr 0.44 (V) - check if	
Set maximum speed	Enter: • Maximum speed in Pr 0.02 (rpm)	0.02
Set acceleration / deceleration rates	 Enter: Acceleration rate in Pr 0.03 (s/1000rpm) Deceleration rate in Pr 0.04 (s/1000rpm) (If braking resistor fitted, set Pr 0.15 = FAST. Also ensure Pr 10.30 and Pr 10.31 are set correctly, otherwise premature 'It.br' trips may be seen.) 	1000pm
Autotune	 Unidrive SP is able to perform either a stationary or a rotating autotune. The motor must be at a standstill before an autotune is enabled. A stationary autotune will give moderate performance whereas a rotating autotune will give improved performance as it measures the actual values of the motor parameters required by the drive. A rotating autotune will cause the motor to accelerate up to ²/₃ base speed in the direction selected regardless of the reference provided. Once complete the motor will coast to a stop. The run signal must be removed before the drive can be made to run at the required reference. The drive can be stopped at any time by removing the run signal or removing the drive enable. A stationary autotune can be used when the motor is loaded and it is not possible to uncouple the load from the motor shaft. The stationary autotune measures the stator resistance and transient inductance of the motor. These are used to calculate the current loop gains, and at the end of the test the values in Pr 0.38 and Pr 0.39 are updated. A stationary autotune does not measure the power factor of the motor so the value on the motor nameplate must be entered into Pr 0.43. A rotating autotune before rotating the motor at ²/₃ base speed in the direction selected. The rotating autotune: Set Pr 0.40 = 1 for a stationary autotune or set Pr 0.40 = 2 for a rotating autotune Close the Drive Enable signal (terminal 31). The drive will display 'rdY' Close the run signal (terminal 26 or 27). The lower display will flash 'Auto' and 'tunE' alternatively, while the drive is performing the autotune. Wait for the drive to display 'rdY' or 'inh' and for the motor to come to a standstill If the drive tips, see Chapter 13 <i>Diagnostics</i> on page 275. Remove the drive enable and run signal from the drive. 	R _s dL _s T Nm Nm Nm Nrpm
Save parameters	Enter 1000 in Pr xx.00 Press the red reset button or toggle the reset digital input (ensure Pr xx.00 returns to 0)	
Run	Drive is now ready to run	t O

Safety Product Mechanical Electrical Getting Basic Running Optimisation Optimisation Information Installation Installation Started Parameters the motor Optimisation	Smartcard Onboa operation PLC	C Parameters	Technical Data Diagnostics	UL Listing Information
--	----------------------------------	--------------	-------------------------------	---------------------------

7.3.4 Servo

Permanent magnet motor with a speed and position feedback device For simplicity only an incremental quadrature encoder with commutation outputs will be considered here. For information on setting up one of the other supported speed feedback devices, refer to section 7.5 Setting up a feedback device on page 134.

Action	Detail	
Before power- up	 Ensure: Drive Enable signal is not given (terminal 31) Run signal is not given Motor is connected Feedback device is connected 	\times
Power-up the drive	Ensure: • Drive displays 'inh' If the drive trips, see Chapter 13 <i>Diagnostics</i> on page 275.	
Set motor feedback parameters	 Incremental encoder basic set-up Enter: Drive encoder type in Pr. 3.38 = Ab.SErVO (3): Quadrature encoder with commutation outputs Encoder power supply in Pr. 3.36 = 5V (0), 8V (1) or 15V (2). If Ab encoder voltage is greater than 5V, then the termination resistors must be disabled Pr 3.39 to 0. If Ab encoder voltage supply too high for the encoder could result in damage to the feedback device. CAUTION Setting the encoder voltage supply too high for the encoder could result in damage to the feedback device. Drive encoder Pulses Per Revolution in Pr. 3.34 (set according to encoder) Drive encoder termination resistor setting in Pr. 3.39: 0 = A-A B-B Z-Z\ termination resistors enabled 1 = A-A B-B Z-Z\ termination resistors enabled, Z-Z\ termination resistors disabled 2 = A-A B-B Z-Z\ termination resistors enabled 	
Enter motor nameplate details	 Enter: Motor rated current in Pr 0.46 (A) Ensure that this equal to or less than the Heavy Duty rating of the drive otherwise It.AC trips may occur during the autotune. Number of poles in Pr 0.42 	A Constant of the second secon
Set maximum speed	Enter: • Maximum speed in Pr 0.02 (rpm)	8.82
Set acceleration / deceleration rates	 Enter: Acceleration rate in Pr 0.03 (s/1000rpm) Deceleration rate in Pr 0.04 (s/1000rpm) (If braking resistor fitted, set Pr 0.15 = FAST. Also ensure Pr 10.30 and Pr 10.31 are set correctly, otherwise premature 'lt.br' trips may be seen.) 	1000pm
Autotune	 Unidrive SP is able to perform a short low speed, a normal low speed or a minimal movement autotune. The motor must be at a standstill before an autotune is enabled. A normal low speed autotune will measure the encoder phase offset angle and calculate the current gains. The short low speed and normal low speed tests will rotate the motor by up to 2 revolutions in the direction selected, regardless of the reference provided. The minimal movement test will move the motor through an angle defined by Pr 5.38. Once complete the motor will come to a standstill. The run signal must be removed before the drive can be made to run at the required reference. The drive can be stopped at any time by removing the run signal or removing the Drive Enable. The short low speed and normal low speed tests will rotate the motor by up to 2 rotations in the direction selected and the drive measures the encoder phase angle and updates the value in Pr 3.25. The normal low speed test also measures the stator resistance, and inductance of the motor. These are used to calculate the current loop gains, and at the end of the test the values in Pr 0.39 and Pr 0.39 are updated. The short low speed test takes approximately 20s to complete. The minimal movement autotune will move the motor through an angle defined by Pr 5.38. The motor must not be loaded for this test although it will operate correctly when the load is an inertia. To perform an autotune: Set Pr 0.40 = 1 for a short low speed autotune, Pr 0.40 = 2 for a normal low speed test or Pr 0.40 = 5 for a minimal movement autotune. Close the Drive Enable signal (terminal 26 or 27). Close the Drive Enable signal (terminal 26 or 27). Close the Drive Enable signal (terminal 31). The lower display will flash 'Auto' and 'tunE' alternatively, while the drive is performing the test. Wait for the drive to display 'rdy' or 'inh' and for the motor to come to a standstill. If the drive trips i	
Save parameters	Enter 1000 in Pr xx.00 Press the red reset button or toggle the reset digital input (ensure Pr xx.00 returns to 0)	
Run	Drive is now ready to run	•

Safe	ety	Product	Mechanical	Electrical	Getting	Basic	Running	Optimisation	Smartcard	Onboard	Advanced	Technical	Diagnostics	UL Listing
Information	ation	Information	Installation	Installation	Started	Parameters	the motor	Optimisation	operation	PLC	Parameters	Data	Diagnostics	Information

7.4 Quick start commissioning (EPASoft)

EPASoft is a Windows[™] based software commissioning tool for Unidrive SP and other EPA products.

EPASoft can be used for commissioning and monitoring, drive parameters can be uploaded, downloaded and compared, and simple or custom menu listings can be created. Drive menus can be displayed in standard list format or as live block diagrams. CTSoft is able to communicate with a single drive or a network.

EPASoft can be found on the CD which is supplied with the drive and is also available at request (file size approximately 60MB).

EPASoft system requirements:

- Windows 98/98SE/ME/NT4/2000/XP. Windows 95 is NOT supported
- Internet Explorer V5.0 or later must be installed
- Minimum of 800x600 screen resolution with 256 colours. 1024x768 is recommended.
- 128MB RAM
- Pentium II 266MHz or better recommended.
- Adobe Acrobat Reader 5.1 or later (for parameter help). See Unidrive SP CD provided
- Note that you must have administrator rights under Windows NT/ 2000/XP to install.

To install CTSoft from the CD, insert the CD and the auto-run facility should start up the front-end screen from which CTSoft can be selected. Any previous copy of CTSoft should be uninstalled before proceeding with the installation (existing projects will not be lost).

Included with CTSoft are the user guides for the supported drive models. When help on a particular parameter is request by the user, CTSoft links to the parameter in the relevant advanced user guide.

7.5 Setting up a feedback device

This section shows the parameter settings which must be made to use each of the compatible encoder types with Unidrive SP. For more information on the parameters listed here please refer to the Unidrive SP Advanced User Guide.

7.5.1 Overview

Table 7-3 Parameters required for feedback device set-up

	Parameter	Ab, Fd, Fr, Ab.SErVO, Fd.SErVO, Fr.SErVO, or SC encoders	SC.HiPEr encoder	SC.EndAt or SC.SSI encoders	EndAt encoder	SSI encoder
3.33	Drive encoder turns		✓ x	√ x	✓ x	✓
3.34	Drive encoder lines per revolution	\checkmark	√ x	√ x		
3.35	Drive encoder comms resolution		√ x	√ x	√ x	~
3.36	Drive encoder supply voltage*	\checkmark	\checkmark	✓	\checkmark	√
3.37	Drive encoder comms baud rate			√	\checkmark	√
3.38	Drive encoder type	✓	\checkmark	✓	\checkmark	✓
3.41	Drive encoder auto configuration enable or SSI binary format select		\checkmark	~	\checkmark	~

✓ Information required

x Parameter can be set-up automatically by the drive through auto-configuration

* Pr 3.36: If A + B >5V then disable termination resistors

Table 7-3 shows a summary of the parameters required to set-up each feedback device. More detailed information follows.

Safetv	Product	Mechanical	Electrical	Getting	Basic	Runnina	• • • •	Smartcard	Onboard	Advanced	Technical	D :	UL Listina
nformation		Installation	Installation			the motor	Optimisation	operation	PLC	Parameters	Data	Diagnostics	Information
mormation	information	matanation	matanation	Olaricu	i arameters			operation	FLC	1 arameters	Data		monnation

7.5.2 Detailed feedback device commissioning information

Standard quadrature encoder w Sincos encoder without serial c		ut commutation signals (A, B, Z or A, B, Z, U, V, W), or ions
Encoder type	Pr 3.38	 Ab (0) for a quadrature encoder without commutation signals * Ab.SErVO (3) for a quadrature encoder with commutation signals SC (6) for a Sincos encoder without serial communications *
Encoder power supply voltage	Pr 3.36	5V (0), 8V (1) or 15V (2) NOTE If Ab encoder voltage is greater than 5V, then the termination resistors must be disabled Pr 3.39 to 0
Encoder number of lines per revolution	Pr 3.34	Set to the number of lines or sine waves per revolution of the encoder. See section 7.5.3 <i>Restriction of encoder number of lines per revolution</i> on page 137 for restrictions on this parameter.
Encoder termination selection (Ab or Ab.SErVO only)	Pr 3.39	 0 = A, B, Z termination resistors disabled 1 = A, B termination resistors enabled and Z termination resistors disabled 2 = A, B, Z termination resistors enabled
Encoder error detection level	Pr 3.40	 0 = Error detection disable 1 = Wire break detection on A, B and Z inputs enabled 2 = Phase error detection (Ab.SErVO only) 3 = Wire break detection on A, B and Z inputs and phase error detection (Ab.SErVO only) Termination resistors must be enabled for wire break detection to operate

* These settings should only be used in closed loop vector mode, otherwise a phase offset test must be performed after every power up.

	Incremental encoder with frequency and direction (F and D), or Forward and Reverse (CW and CCW) signals, with or without commutation signals									
Encoder type	Pr 3.38	 Fd (1) for frequency and direction signals without commutation signals * Fr (2) for forward and reverse signals without commutation signals * Fd.SErVO (4) for a frequency and direction encoder with commutation signals Fr.SErVO (5) for forward and reverse signals with commutation signals 								
Encoder power supply voltage	Pr 3.36	5V (0), 8V (1) or 15V (2) NOTE If Ab encoder voltage is greater than 5V, then the termination resistors must be disabled Pr 3.39 to 0								
Encoder number of lines per revolution	Pr 3.34	Set to the number of pulses per revolution of the encoder divide by 2. See section 7.5.3 <i>Restriction of encoder number of lines per revolution</i> on page 137 for restrictions on this parameter.								
Encoder termination selection	Pr 3.39	 0 = F or CW, D or CCW, Z termination resistors disabled 1 = F or CW, D or CCW termination resistors enabled and Z termination resistors disabled 2 = For CW, D or CCW, Z termination resistors enabled 								
Encoder error detection level	Pr 3.40	 0 = Error detection disable 1 = Wire break detection on F & D or CW & CCW, and Z inputs enabled 2 = Phase error detection (Fd.SErVO and Fr.SErVO only) 3 = Wire break detection on F & D or CW & CCW, and Z inputs and Phase error detection (Fd.SErVO and Fr.SErVO only) Termination resistors must be enabled for wire break detection to operate 								

* These settings should only be used in closed loop vector mode, otherwise a phase offset test must be performed after every power up.

Safety Information	Product Information	Mechanical Installation	Electrical Installation	Getting Started	Basic Parameters	Running the motor	Optimisation	Smartcard operation	Onboard PLC	Advanced Parameters	Technical Data	Diagnostics	UL Listing Information
	Sincos er EnDat coi				Dat serial co	ommunica	ations, or						
		•		SRM 50/6	Hiperface er 50, SHS 170	, LINCOD	-						
Encoder t	уре		F	Pr 3.38	 SC.HiPEr (7) for a Sincos encoder with Hiperface serial communications EndAt (8) for an EnDat communications only encoder SC.EndAt (9) for a Sincos encoder with EnDat serial communications 								
Encoder p	power supp	ly voltage	F	Pr 3.36	5V (0), 8V (1) or 15V ((2)						
Encoder auto configure enable Pr 3.41					Setting this to 1 automatically sets up the following parameters: Pr 3.33 Encoder turn bits Pr 3.34 Encoder number of lines of revolution (SC.HiPEr and SC.EndAt only) * Pr 3.35 Encoder single turn comms resolution Alternatively these parameters can be entered manually.								
Encoder comms baud rate (EndAt and SC.EndAt only) Pr 3.37					100 = 100k, 200 = 200k, 300 = 300k, 500 = 500k, 1000 = 1M, 1500 = 1.5M, or 2000 = 2M								
Encoder error detection level (SC.HiPEr and SC.EndAt only) Pr 3.40					 0 = Error de 1 = Wire bre 2 = Phase e 3 = Wire bre 	eak detect	ion on Sin a tion			nase error c	detection		

* See section 7.5.3 Restriction of encoder number of lines per revolution on page 137 for restrictions on this parameter.

Absolute SSI communications only e Absolute Sincos encoder with SSI	encoder, o	r
Encoder type	Pr 3.38	SSI (10) for a SSI communications only encoder SC.SSI (11) for a Sincos encoder with SSI
Encoder power supply voltage	Pr 3.36	5V (0), 8V (1) or 15V (2) NOTE
Encoder number of lines per revolution. (SC.SSI only)	Pr 3.34	If Ab encoder voltage is greater than 5V, then the termination resistors must be disabled Pr 3.39 to 0 Set to the number of sine waves per revolution of the encoder. See section 7.5.3 <i>Restriction of encoder number of lines per revolution</i> on page 137 for restrictions on this parameter.
SSI binary format select	Pr 3.41	OFF (0) for gray code, or On (1) for binary format SSI encoders
Encoder turn bits	Pr 3.33	Set to the number of turn bits for the encoder (this is usually 12bits for a SSI encoder)
Encoder single turn comms resolution	Pr 3.35	Set to the single turn comms resolution for the encoder (this is usually 13bits for a SSI encoder)
Encoder comms baud rate	Pr 3.37	100 = 100k, 200 = 200k, 300 = 300k, 500 = 500k, 1000 = 1M, 1500 = 1.5M, or 2000 = 2M
Encoder error detection level	Pr 3.40	 0 = Error detection disabled 1 = Wire break detection on Sin and Cos inputs (SC.SSI only) 2 = Phase error detection (SC.SSI only) 3 = Wire break detection and phase error detection (SC.SSI only) 4 = SSI power supply bit monitor 5 = SSI power supply bit monitor and wire break detection (SC.SSI only) 6 = SSI power supply bit monitor and phase error detection (SC.SSI only) 7 = SSI power supply bit monitor, wire break detection and phase error detection (SC.SSI only)

UVW commutation signal only encoders*								
Encoder type	Pr 3.38	Ab.servo						
Encoder power supply voltage	Pr 3.36	5V (0), 8V (1) or 15V (2)						
Encoder number of lines per revolution	Pr 3.34	Set to zero						
Encoder error detection level	Pr 3.40	Set to zero to disable wire break detection						

* This feedback device provides very low resolution feedback and should not be used for applications requiring a high level of performance.

Safety	Product	Mechanical	Electrical	Getting	Basic	Running	Optimisation	Smartcard	Onboard	Advanced	Technical	Diagnostics	UL Listing
Informati	on Information	Installation	Installation	Started	Parameters	the motor	Optimisation	operation	PLC	Parameters	Data	Diagnostics	Information

7.5.3 Restriction of encoder number of lines per revolution

Although Pr **3.34** can be set to any value from 0 to 50,000 there are restrictions on the values actually used by the drive. These restrictions are dependent on the software version as follows:

Software version V01.06.01 and later

Table 7-4 Restrictions of drive encoder lines per revolution with software version V01.06.01 and later

Position feedback device	Equivalent Lines per revolution used by the drive
Ab, Fd, Fr, Ab.SErVO, Fd.SErVO, Fr.SerVO, SC	The drive uses the value in Pr 3.34 .
SC.HiPEr, SC.EndAt, SC.SSI (rotary encoders)	If Pr $3.34 \le 1$, the drive uses the value of 1. If 1< Pr $3.34 < 32,768$, the drive uses the value in Pr 3.34 rounded down to nearest value that is a power of 2. If Pr $3.34 \ge 32,768$, the drive uses the value of 32,768.
SC.HiPEr, SC.EndAt, SC.SSI (linear encoders	The drive uses the value in Pr 3.34 .

Software version V01.06.00 and earlier

Table 7-5 Restrictions of drive encoder lines per revolution with software version V01.06.00 and earlier

Position feedback device	Equivalent Lines per revolution used by the drive
Ab, Fd, Fr	If Pr 3.34 <2, the drive uses the value of 2. If $2 \le Pr$ 3.34 . $\le 16,384$, the drive uses the value in Pr 3.34 . If Pr 3.34 > $16,384$, the drive uses the value in Pr 3.34 rounded down to nearest value divisible by 4.
Ab.SErVO, Fd.SErVO, Fr.SErVO	If Pr $3.34 \le 2$, the drive uses the value of 2. If 2< Pr $3.34 < 16,384$, the drive uses the value in Pr 3.34 rounded down to nearest value that is a power of 2. If Pr $3.34 \ge 16,384$, the drive uses the value of 16,384.
SC, SC.HiPEr, SC.EndAt, SC.SSI	If Pr $3.34 \le 2$, the drive uses the value of 2. If 2< Pr $3.34 < 32,768$, the drive uses the value in Pr 3.34 rounded down to nearest value that is a power of 2. If Pr $3.34 \ge 32,768$, the drive uses the value of 32,768.

At power-up Pr **3.48** is initially zero, but is set to one when the drive encoder and any encoders connected to any Solutions Modules have been initialised. The drive cannot be enabled until this parameter is one.

- Encoder initialisation will occur as follows:
- At drive power-up
- When requested by the user via Pr 3.47
- When trips PS.24V, Enc1 to Enc8, or Enc11 to Enc17 trips are reset
- The encoder number of lines per revolution (Pr 3.34) or the number of motor poles (Pr 5.11 and Pr 21.11) are changed (software version V01.08.00 and later).

Initialisation causes an encoder with communications to be re-initialised and auto-configuration to be performed if selected. After initialisation Ab.SErVO, Fd.SErVO and Fr.SErVO encoders will use the UVW commutations signals to give position feedback for the first 120° (electrical) of rotation when the motor is restarted.

Safety Information	Product on Information		Electrical Installation	Getting Started	Basic Parameters	Running the motor	Optimisation	Smartcard operation	Onboard PLC	Advanced Parameters	Technical Data	Diagnostics	UL Listing Information
set-up, r simplify 8.1	pter takes naximising this task. Moto l	misat the user thro performance map pa	ough method e. The auto- aramete	tuning fea	0	•							
8.1.1	Open I	oop moto	or contro										
The mo page 14 followin • Cur • Mot • Vec • Slip • Dyr	tor rated cu la, for infor g: rent limits or thermal tor mode v compensa namic V/F c		eter must b at setting this 8.3 <i>Current</i> btection (see ol (see Volta p compensa	s paramet t <i>limit</i> s on e section a age mode	er higher t page 148, 8.4 <i>Motor</i> Pr 0.07 , la	then the ma for more ir thermal pro	us current o aximum Hea oformation) otection on p cable)	f the moto vy Duty cu age 148, f	r. (See sec irrent ratin or more in	g.) The mot formation)	ximum me or rated c	otor rated c urrent is us	sed in the
Pr 0.44	{5.09} Mo	tor rated vo	ltage				Defines th	ne voltage	applied t	o the moto	r at rated	frequency	/
Pr 0.47	{5.06} Mo	tor rated fre	equency				Defines th	ne frequer	ncy at whi	ch rated vo	oltage is a	applied	
are use motor (s frequen calculat	d to define see voltage cy is also u	bltage Pr 0.4 the voltage e mode Pr 0. used in conju I slip for slip able).	to frequency 07 , later in t inction with	y characte this table) the motor	The moto rated spe	ied to the or rated ed to			Pr 0.44 / 2	put voltage charac	Output frequency		
Pr 0.45	{5.08} Mo	tor rated sp	eed				Defines th	ne full loa	d rated sp	eed of the	motor		
Pr 0.42	{5.11} Mot	tor number	of poles				Defines th	ne numbe	r of motor	poles			
The mo	tor rated s	peed and the	e number of	poles are	used with	the motor	rated freque	ency to cal	culate the	rated slip of	f inductior	machines	in Hz.
Rat	ed slip (Hz) = Motor rat	ed frequenc	cy - (Numl	per of pole	pairs x [M	otor rated sp	oeed / 60])	= 0.47 -	$\left(\frac{0.42}{2} \times \frac{0.4}{60}\right)$	$\frac{15}{1}$		
namepl because region. than sy	ate value, v e the name Slip compe nchronous	0 or to synch which should plate value i ensation is no speed to de d in the calc	l give the co may be inac ormally used liberately in	rrect rpm ccurate. S d to correct troduce sp	for a hot m lip comper at for the m beed droop	nachine. So nsation will otor speed p. This can	metimes it w operate corr to prevent s be useful to	vill be nece rectly both peed varia aid load s	essary to a below bas ation with le haring wit	djust this wl se speed ar oad. The rat h mechanic	hen the dr nd within th ed load rp ally couple	ive is comm ne field-wea om can be s ed motors.	nissioned akening set higher
of moto	r poles is a	utomatically	calculated	from the r	ated frequ	ency Pr 0.4	7, and the r	notor rated	d speed Pi	0.45 .			
		es = 120 x (l		trequency	/ Pr 0.47 /	Notor rate		,					
The pow with the extensiv parame	ver factor is motor rate vely to cont ter is set u	tor rated po s the true po ed current Pr trol the drive p correctly. T	wer factor o 0.46 , to cal , and the ma	lculate the agnetising	e rated acti current is	ive current s used in ve	een the moto and magnet ector mode s	or voltage ising curre	and currer ent of the r tance com	notor. The rappensation.	er factor is ated active It is impor	used in co e current is tant that th	used is
	{5.12} Aut												
the mea • A si mea Volt nan	asured valu ationary and asures the age mode neplate mu	otune tests a le of power f utotune can stator resista Pr 0.07 , late st be entered nd a run sigr	actor of the be used wh ance (Pr 5.1 r in this tabl d into Pr 0.4	motor is u en the mo 7) and vo le). The st 3 . To perf	used by the tor is load Itage offse ationary a orm a Stat	e drive. ed and it is et (Pr 5.23), utotune do	not possible which are r es not meas	e to remov equired fo ure the po	e the load r good per wer factor	from the m formance in of the moto	otor shaft. vector co or so the v	The statio ontrol mode alue on the	nary test es (see e motor
mot and Rot Followir before t	or at ² / ₃ bas voltage off ating autotung the com he drive ca	tune should c se speed in th set (Pr 5.23), ine, set Pr 0. pletion of an an be made to n terminal 31	the direction s the rotating 40 to 2, and autotune te to run at the	selected for autotune provide the est the drive required	or several s measures ne drive wit ve will go i reference.	seconds (real the power f h both an e nto the inhi The drive	gardless of th actor of the r nable signal bit state. Th can be put in	ne speed re motor and (on termin e drive mu n to a cont	eference). updates Pr al 31) and ist be plac rolled disa	In addition to 0.43 with th a run signal ed into a co ble conditio	o the stato ne correct (on termir ntrolled di on by remo	r resistance value. To pe nal 26 or 27 isable conc oving the S	e (Pr 5.17) erform a). lition ecure

Safety Information	Product Information	Mechanical Installation	Electrical Installation	Getting Started	Basic Parameters	Running the motor	Optimisation	Smartcard operation	Onboard PLC	Advanced Parameters	Technical Data	Diagnostics	UL Listing Information
-----------------------	------------------------	----------------------------	----------------------------	--------------------	---------------------	----------------------	--------------	---------------------	----------------	------------------------	-------------------	-------------	---------------------------

Pr 0.07 {5.14} Voltage mode

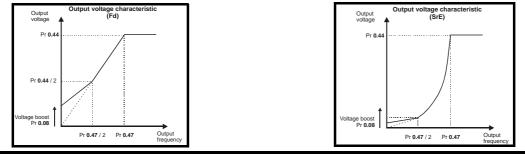
There are six voltage modes available which fall into two categories, vector control and fixed boost.

Vector control

Vector control mode provides the motor with a linear voltage characteristic from 0Hz to motor rated frequency (Pr **0.47**), and then a constant voltage above motor rated frequency. When the drive operates between motor rated frequency/50 and motor rated frequency/4, full vector based stator resistance compensation is applied. When the drive operates between motor rated frequency/4 and motor rated frequency/2 the stator resistance compensation is gradually reduced to zero as the frequency increases. For the vector modes to operate correctly the motor rated power factor (Pr **0.43**), stator resistance (Pr **5.17**) and voltage offset (Pr **5.23**) are all required to be set up accurately. The drive can be made to measure these by performing an autotune (see Pr **0.40** Autotune). The drive can also be made to measure the stator resistance and voltage offset automatically every time the drive is enabled or the first time the drive is enabled after it is powered up, by selecting one of the vector control voltage modes.

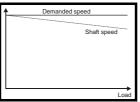
(0) $\mathbf{Ur}_{\mathbf{S}}$ = The stator resistance and the voltage offset are measured and the parameters for the selected motor map are over-written each time the drive is made to run. This test can only be done with a stationary motor where the flux has decayed to zero. Therefore this mode should only be used if the motor is guaranteed to be stationary each time the drive is made to run. To prevent the test from being done before the flux has decayed there is a period of 1 second after the drive has been in the ready state during which the test is not done if the drive is made to run again. In this case, previously measured values are used. Ur_s mode ensures that the drive compensates for any change in motor parameters due to changes in temperature. The new values of stator resistance and voltage offset are not automatically saved to the drive's EEPROM. (4) \mathbf{Ur}_{-1} = The stator resistance and voltage offset are measured when the drive is first made to run after each power-up. This test can only be done with a stationary motor. Therefore this mode should only be used if the motor is guaranteed to be stationary the first time the drive is made to run after each power-up. The new values of stator resistance and voltage offset are not automatically saved to the drive's EEPROM. (1) \mathbf{Ur} = The stator resistance and voltage offset are not measured. The user can enter the motor and cabling resistance into the stator resistance parameter (Pr **5.17**). However this will not include resistance effects within the drive inverter. Therefore if this mode is to be used, it is best to use an autotune test initially to measure the stator resistance and voltage offset.

(3) **Ur_Auto=** The stator resistance and voltage offset are measured once, the first time the drive is made to run. After the test has been completed successfully the voltage mode (Pr **0.07**) is changed to Ur mode. The stator resistance (Pr **5.17**) and voltage offset (Pr **5.23**) parameters are written to, and along with the voltage mode (Pr **0.07**), are saved in the drive's EEPROM. If the test fails, the voltage mode will stay set to Ur_Auto and the test will be repeated next time the drive is made to run.


Fixed boost

Neither the stator resistance nor the voltage offset are used in the control of the motor, instead a fixed characteristic with low frequency voltage boost as defined by parameter Pr **0.08**, is used. Fixed boost mode should be used when the drive is controlling multiple motors. There are two settings of fixed boost available:

(2) Fd = This mode provides the motor with a linear voltage characteristic from 0Hz to rated frequency (Pr 0.47), and then a constant voltage above rated frequency.


(5) **SrE** = This mode provides the motor with a square law voltage characteristic from 0Hz to rated frequency (Pr **0.47**), and then a constant voltage above rated frequency. This mode is suitable for variable torque applications like fans and pumps where the load is proportional to the square of the speed of the motor shaft. This mode should not be used if a high starting torque is required.

For both these modes, at low frequencies (from 0Hz to ½ x Pr 0.47) a voltage boost is applied defined by Pr 0.08 as shown below:

Pr 5.27 Slip compensation

When a motor, being controlled in open loop mode, has load applied a characteristic of the motor is that the output speed droops in proportion to the load applied as shown:

In order to prevent the speed droop shown above slip compensation should be enabled.

To enable slip compensation Pr **5.27** must be set to a 1 (this is the default setting), and the motor rated speed must be entered in Pr **0.45** (Pr **5.08**). The motor rated speed parameter should be set to the synchronous speed of the motor minus the slip speed. This is normally displayed on the motor nameplate, i.e. for a typical 18.5kW, 50Hz, 4 pole motor, the motor rated speed would be approximately 1465rpm. The synchronous speed for a 50Hz, 4 pole motor is 1500rpm, so therefore the slip speed would be 35rpm.

If the synchronous speed is entered in Pr 0.45, slip compensation will be disabled. If too small a value is entered in Pr 0.45, the motor will run faster than the demanded frequency.

The synchronous speeds for 50Hz motors with different numbers of poles are as follows:

2 pole = 3000rpm, 4 pole = 1500rpm, 6pole =1000rpm, 8 pole = 750rpm

Diagnostics	Safety Information			_	Optimisation		Advanced Parameters	Technical Data	Diagnostics	UL Listing Information
-------------	-----------------------	--	--	---	--------------	--	------------------------	-------------------	-------------	---------------------------

8.1.2 RFC mode

Pr 0.46 {5.07} Motor rated current	Defines the maximum motor continuous current
	us current of the motor. (See section 8.2 Maximum motor rated current on
•	aximum Heavy Duty current rating.) The motor rated current is used in the
following:	
Current limits (see section 8.3 Current limits on page 148, for more in	
Motor thermal overload protection (see section 8.4 Motor thermal pro-	stection on page 148, for more information)
Vector control algorithm	
Pr 0.44 {5.09} Motor rated voltage	Defines the voltage applied to the motor at rated frequency
Pr 0.47 {5.06} Motor rated frequency	Defines the frequency at which rated voltage is applied
The motor rated voltage Pr 0.44 and the motor rated frequency Pr 0.47	
are used to define the relationship between the voltage and frequency	Output Voltage characteristic
applied to the motor, as shown.	Voliage
The motor rated voltage is used by the field controller to limit the voltage	Pr 0.44
applied to the motor. Normally this is set to the nameplate value. To allow current control to be maintained, it is necessary for the drive to leave	
some 'headroom' between the motor terminal voltage and the maximum	
available drive output voltage. For good transient performance at high	
speed, the motor rated voltage should be set below 95% of the minimum	Pr 0.44 / 2
supply voltage to the drive.	
The motor rated voltage and motor rated frequency are also used during	
the rotating autotune test (see Autotune Pr 0.40 later in this table) and in	
the calculations required for automatic optimisation of the motor rated	
speed (see Motor rated speed optimisation Pr 5.16 , later in this table).	Pr 0.47 / 2 Pr 0.47 Output frequency
Therefore, it is important that the correct value for motor rated voltage is	
used.	
Pr 0.45 {5.08} Motor rated speed	Defines the full load rated speed of the motor
Pr 0.42 {5.11} Motor number of poles	Defines the number of motor poles
The motor rated speed and motor rated frequency are used to determine	the full load slip of the motor which is used by the vector control algorithm.
Incorrect setting of this parameter has the following effects:	
Reduced efficiency of motor operation	
Reduction of maximum torque available from the motor	
Reduced transient performance	
Inaccurate control of absolute torque in torque control modes	
The nameplate value is normally the value for a hot motor; however, som	
	parameter or an optimisation system may be used to automatically adjust
this parameter (see Motor rated speed autotune Pr 5.16, later in this table	<u>).</u>
When Pr 0.42 is set to 'Auto', the number of motor poles is automatically	calculated from the motor rated frequency Pr 0.47, and the motor rated
speed Pr 0.45	
Number of poles = 120 x (Motor rated frequency Pr 0.47 / Motor rated	d speed Pr 0.45) rounded to the nearest even number
Pr 0.43 {5.10} Motor rated power factor	Defines the angle between the motor voltage and current
	een the motor voltage and current. If the stator inductance is set to zero (Pr
	rrent Pr 0.46 and other motor parameters to calculate the rated active and
	gorithm. If the stator inductance has a non-zero value this parameter is not
used by the drive, but is continuously written with a calculated value of po-	ower factor. The stator inductance can be measured by the drive by
performing a rotating autotune (see Autotune Pr 0.40, later in this table).	

Safety Product Mechanical Electrical Getting Basic Running the Optimisa Information Information Installation Installation Started Parameters motor Optimisa	Smartcard operation	Onboard PLC	Advanced Parameters	Technical Data	Diagnostics	UL Listing Information
---	---------------------	----------------	------------------------	-------------------	-------------	---------------------------

Pr 0.40 {5.12} Autotune

There are three autotune tests available in RFC mode, a stationary test, a rotating test and an inertia measurement test. A stationary autotune will give moderate performance whereas a rotating autotune will give improved performance as it measures the actual values of the motor parameters required by the drive. An inertia measurement test should be performed separately to a stationary or rotating autotune.

- A stationary autotune can be used when the motor is loaded and it is not possible to remove the load from the motor shaft. The stationary autotune measures the stator resistance (Pr **5.17**) and transient inductance (Pr **5.24**) of the motor. These are used to calculate the current loop gains, and at the end of the test the values in Pr **4.13** and Pr **4.14** are updated. A stationary autotune does not measure the power factor of the motor so the value on the motor nameplate must be entered into Pr **0.43**. To perform a Stationary autotune, set Pr **0.40** to 1, and provide the drive with both an enable signal (on terminal 31) and a run signal (on terminal 26 or 27).
- A rotating autotune should only be used if the motor is unloaded. A rotating autotune first performs a stationary autotune before rotating the motor at 2/3 of motor rated frequency in the direction selected for approximately 30s. During the rotating autotune the stator inductance (Pr 5.25), and the motor saturation breakpoints (Pr 5.29 and Pr 5.30) are modified by the drive. The power factor is also modified for user information only, but is not used after this point as the stator inductance is used in the vector control algorithm instead. To perform a Rotating autotune, set Pr 0.40 to 2, and provide the drive with both an enable signal (on terminal 31) and a run signal (on terminal 26 or 27).
- The inertia measurement test can measure the total inertia of the load and the motor. This is used to set the speed loop gains (see Speed loop gains) and to provide torque feed-forwards when required during acceleration.

During the inertia measurement test the drive attempts to accelerate the motor in the direction selected up to ${}^{3}{}_{4}$ x rated load rpm and then back to standstill. The drive uses rated torque/16, but if the motor cannot be accelerated to the required speed the drive then increases the torque progressively to $x_{1/6}^{1}$, $x_{1/2}^{1}$, $x_{1/2}^{1}$ and x1 rated torque. If the required speed is not achieved on the final attempt the test is aborted and a tunE1 trip is initiated. If the test is successful the acceleration and deceleration times are used to calculate the motor and load inertia which is then written to Pr **3.18**. The motor map parameters must be set up correctly including the power factor before performing an inertia measurement test. To perform an Inertia measurement autotune, set Pr **0.40** to 3, and provide the drive with both an enable signal (on terminal 31) and a run signal (on terminal 26 or 27).

Following the completion of an autotune test the drive will go into the inhibit state. The drive must be placed into a controlled disable condition before the drive can be made to run at the required reference. The drive can be put in to a controlled disable condition by removing the Secure Disable signal from terminal 31, setting the drive enable parameter Pr **6.15** to OFF (0) or disabling the drive via the control word (Pr **6.42** & Pr **6.43**).

Pr 5.16 Motor rated speed autotune

The motor rated speed parameter (Pr **0.45**) in conjunction with the motor rated frequency parameter (Pr **0.47**) defines the full load slip of the motor. The slip is used in the motor model for RFC control. The full load slip of the motor varies with rotor resistance which can vary significantly with motor temperature. When Pr **5.16** is set to 1 or 2 the drive can automatically sense if the value of slip defined by Pr **0.47** and Pr **0.45** has been set incorrectly or if it has varied with motor temperature. If the value is incorrect Pr **0.45** is automatically adjusted. Pr **0.45** is not saved at power-down, and so when the drive is powered-down and up again it will return to the last saved value. If the new value is required at the next power-up it must be saved by the user. Automatic optimisation is only enabled when the speed is above rated speed/8, and when the load on the motor load rises above $\frac{5}{8}$ rated load. Optimisation is disabled again if the load falls below $\frac{1}{2}$ rated load. For best optimisation results the correct values of stator resistance (Pr **5.17**), transient inductance (Pr **5.24**), stator inductance (Pr **5.25**) and saturation breakpoints (Pr **5.29**, Pr **5.30**) should be stored in the relevant parameters (all these can be measured by the drive by performing a rotating autotune). Motor rated speed autotune is not available if the drive is not using external position/speed feedback.

The gain of the optimiser, and hence the speed with which it converges, can be set at a normal low level when Pr **5.16** is set to 1. If this parameter is set to 2, the gain is increased by a factor of 16 to give faster convergence.

Pr 0.38 {4.13} / Pr 0.39 {4.14} Current loop gains

The current loop gains proportional (Kp) and integral (Ki) gains control the response of the current loop to a change in current (torque) demand. The default values give satisfactory operation with most motors. However, for optimal performance in dynamic applications it may be necessary to change the gains to improve the performance. The proportional gain (Pr **4.13**) is the most critical value in controlling the performance. The values for the current loop gains can be calculated by one of the following:

- During a stationary or rotating autotune (see Autotune Pr 0.40, earlier in this table) the drive measures the stator resistance (Pr 5.17) and transient inductance (Pr 5.24) of the motor and calculates the current loop gains.
- By setting Pr 0.40 to 4 the drive will calculate the current loop gains from the values of stator resistance (Pr 5.17) and transient inductance (Pr 5.24) set in the drive.

This will give a step response with minimum overshoot after a step change of current reference. The proportional gain can be increased by a factor of 1.5 giving a similar increase in bandwidth; however, this gives at step response with approximately 12.5% overshoot. The equation for the integral gain gives a conservative value. In some applications where it is necessary for the reference frame used by the drive to dynamically follow the flux very closely (i.e. high speed RFC induction motor applications) the integral gain may need to have a significantly higher value.

Safety	Product	Mechanical	Electrical	Getting	Basic	Running the	Optimisation	Smartcard	Onboard	Advanced	Technical	Diagnostics	UL Listing
Information	Information	Installation	Installation	Started	Parameters	motor	Optimisation	operation	PLC	Parameters	Data	Diagnostics	Information

Speed loop gains (Pr 0.07 {3.10}, Pr 0.08 {3.11}, Pr 0.09 {3.12})

The speed loop gains control the response of the speed controller to a change in speed demand. The speed controller includes proportional (Kp) and integral (Ki) feed forward terms, and a differential (Kd) feedback term. The drive holds two sets of these gains and either set may be selected for use by the speed controller with Pr **3.16**. If Pr **3.16** = 0, gains Kp1, Ki1 and Kd1 (Pr **0.07** to Pr **0.09**) are used, and if Pr **3.16** = 1, gains Kp2, Ki2 and Kd2 (Pr **3.13** to Pr **3.15**) are used. Pr **3.16** may be changed when the drive is enabled or disabled. If the load is predominantly a constant inertia and constant torque, the drive can calculate the required Kp and Ki gains to give a required compliance angle or bandwidth dependant on the setting of Pr **3.17**.

Proportional gain (Kp), Pr 0.07 {3.10} and Pr 3.13

If the proportional gain has a value and the integral gain is set to zero the controller will only have a proportional term, and there must be a speed error to produce a torque reference. Therefore as the motor load increases there will be a difference between the reference and actual speeds. This effect, called regulation, depends on the level of the proportional gain, the higher the gain the smaller the speed error for a given load. If the proportional gain is too high either the acoustic noise produced by speed feedback quantisation becomes unacceptable, or the stability limit is reached.

Integral gain (Ki), Pr 0.08 {3.11} and Pr 3.14

The integral gain is provided to prevent speed regulation. The error is accumulated over a period of time and used to produce the necessary torque demand without any speed error. Increasing the integral gain reduces the time taken for the speed to reach the correct level and increases the stiffness of the system, i.e. it reduces the positional displacement produced by applying a load torque to the motor. Unfortunately increasing the integral gain also reduces the system damping giving overshoot after a transient. For a given integral gain the damping can be improved by increasing the proportional gain. A compromise must be reached where the system response, stiffness and damping are all adequate for the application.

Differential gain (Kd), Pr 0.09 {3.12} and Pr 3.15

The differential gain is provided in the feedback of the speed controller to give additional damping. The differential term is implemented in a way that does not introduce excessive noise normally associated with this type of function. Increasing the differential term reduces the overshoot produced by under-damping, however, for most applications the proportional and integral gains alone are sufficient.

There are three methods of tuning the speed loop gains dependant on the setting of Pr 3.17:

1. Pr 3.17 = 0, User set-up.

This involves the connecting of an oscilloscope to analogue output 1 to monitor the speed feedback.

Give the drive a step change in speed reference and monitor the

response of the drive on the oscilloscope.

The proportional gain (Kp) should be set up initially. The value should be increased up to the point where the speed overshoots and then reduced slightly.

The integral gain (Ki) should then be increased up to the point where the speed becomes unstable and then reduced slightly.

It may now be possible to increase the proportional gain to a higher value and the process should be repeated until the system response matches the ideal response as shown.

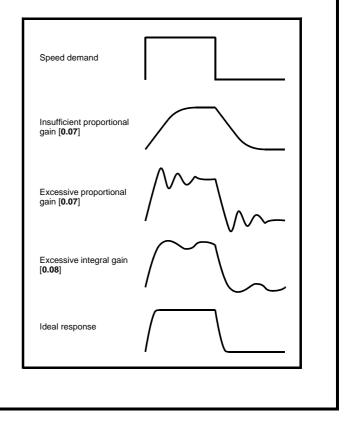
The diagram shows the effect of incorrect P and I gain settings as well as the ideal response.

2. Pr 3.17 = 1, Bandwidth set-up

If bandwidth based set-up is required, the drive can calculate Kp and Ki if the following parameters are set up correctly:

- Pr 3.20 Required bandwidth,
- Pr 3.21 Required damping factor,

Pr **3.18** - Motor and load inertia. The drive can be made to measure the motor and load inertia by performing an inertia measurement autotune (see Autotune Pr **0.40**, earlier in this table).


3. Pr 3.17 = 2, Compliance angle set-up

If compliance angle based set-up is required, the drive can calculate Kp and Ki if the following parameters are set up correctly:

Pr 3.19 - Required compliance angle,

Pr 3.21 - Required damping factor,

Pr **3.18** - Motor and load inertia The drive can be made to measure the motor and load inertia by performing an inertia measurement autotune (see Autotune Pr **0.40**, earlier in this table).

Safety Product Mechanical Electrical Getting Basic Running the motor Information Information Installation Installation Started Parameters Motor Optimisation	on Smartcard operation	Onboard PLC	Advanced Parameters	Technical Data	Diagnostics	UL Listing Information
--	------------------------	----------------	------------------------	-------------------	-------------	---------------------------

8.1.3 Closed loop vector motor control

Pr 0.46 {5.07} Motor rated current	Defines the maximum motor continuous current
 The motor rated current parameter must be set to the maximum continuou page 148, for information about setting this parameter higher than the ma following: Current limits (see section 8.3 <i>Current limits</i> on page 148, for more in Motor thermal overload protection (see section 8.4 <i>Motor thermal pro</i> Vector control algorithm 	ximum Heavy Duty current rating.) The motor rated current is used in the formation)
Pr 0.44 {5.09} Motor rated voltage	Defines the voltage applied to the motor at rated frequency
Pr 0.47 {5.06} Motor rated frequency	Defines the frequency at which rated voltage is applied
The motor rated voltage Pr 0.44 and the motor rated frequency Pr 0.47 are used to define the relationship between the voltage and frequency applied to the motor, as shown. The motor rated voltage is used by the field controller to limit the voltage applied to the motor. Normally this is set to the nameplate value. To allow current control to be maintained, it is necessary for the drive to leave some 'headroom' between the motor terminal voltage and the maximum available drive output voltage. For good transient performance at high speed, the motor rated voltage should be set below 95% of the minimum supply voltage to the drive. The motor rated voltage and motor rated frequency are also used during the rotating autotune test (see Autotune Pr 0.40 later in this table) and in the calculations required for automatic optimisation of the motor rated speed (see Motor rated speed optimisation Pr 5.16 , later in this table). Therefore, it is important that the correct value for motor rated voltage is used.	Output voltage Pr 0.44 Pr 0.44 / 2 Pr 0.44 / 2 Pr 0.47 / 2 Pr 0.47 Output frequency
Pr 0.45 {5.08} Motor rated speed	Defines the full load rated speed of the motor
Pr 0.42 {5.11} Motor number of poles	Defines the number of motor poles
The motor rated speed and motor rated frequency are used to determine t Incorrect setting of this parameter has the following effects:	the full load slip of the motor which is used by the vector control algorithm
 Reduced efficiency of motor operation Reduction of maximum torque available from the motor Reduced transient performance Inaccurate control of absolute torque in torque control modes The nameplate value is normally the value for a hot motor; however, some nameplate value is inaccurate. Either a fixed value can be entered in this this parameter (see Motor rated speed autotune Pr 5.16, later in this table When Pr 0.42 is set to 'Auto', the number of motor poles is automatically 	parameter or an optimisation system may be used to automatically adjust).
	calculated from the motor rated nequency F1 0.47, and the motor rated
speed Pr 0.45	
speed Pr 0.45 Number of poles = 120 x (Motor rated frequency Pr 0.47 / Motor rated	speed Pr 0.45) rounded to the nearest even number

The power factor is the true power factor of the motor, i.e. the angle between the motor voltage and current. If the stator inductance is set to zero (Pr **5.25**) then the power factor is used in conjunction with the motor rated current Pr **0.46** and other motor parameters to calculate the rated active and magnetising currents of the motor, which are used in the vector control algorithm. If the stator inductance has a non-zero value this parameter is not used by the drive, but is continuously written with a calculated value of power factor. The stator inductance can be measured by the drive by performing a rotating autotune (see Autotune Pr **0.40**, later in this table).

Safety Product Mechanical Electrical Getting Basic Running the motor Information Information Installation Installation Started Parameters Motor Optimisation	Smartcard operation	Onboard PLC	Advanced Parameters	Technical Data	Diagnostics	UL Listing Information
--	---------------------	----------------	------------------------	-------------------	-------------	---------------------------

Pr 0.40 {5.12} Autotune

There are three autotune tests available in closed loop vector mode, a stationary test, a rotating test and an inertia measurement test. A stationary autotune will give moderate performance whereas a rotating autotune will give improved performance as it measures the actual values of the motor parameters required by the drive. An inertia measurement test should be performed separately to a stationary or rotating autotune.

- A stationary autotune can be used when the motor is loaded and it is not possible to remove the load from the motor shaft. The stationary autotune measures the stator resistance (Pr 5.17) and transient inductance (Pr 5.24) of the motor. These are used to calculate the current loop gains, and at the end of the test the values in Pr 4.13 and Pr 4.14 are updated. A stationary autotune does not measure the power factor of the motor so the value on the motor nameplate must be entered into Pr 0.43. To perform a Stationary autotune, set Pr 0.40 to 1, and provide the drive with both an enable signal (on terminal 31) and a run signal (on terminal 26 or 27).
- A rotating autotune should only be used if the motor is unloaded. A rotating autotune first performs a stationary autotune before rotating the motor at ²/₃ of motor rated frequency in the direction selected for approximately 30s. During the rotating autotune the stator inductance (Pr 5.25), and the motor saturation breakpoints (Pr 5.29 and Pr 5.30) are modified by the drive. The power factor is also modified for user information only, but is not used after this point as the stator inductance is used in the vector control algorithm instead. To perform a Rotating autotune, set Pr 0.40 to 2, and provide the drive with both an enable signal (on terminal 31) and a run signal (on terminal 26 or 27).
- The inertia measurement test can measure the total inertia of the load and the motor. This is used to set the speed loop gains (see Speed loop gains) and to provide torque feed-forwards when required during acceleration.

During the inertia measurement test the drive attempts to accelerate the motor in the direction selected up to ${}^{3}{}_{4}$ x rated load rpm and then back to standstill. The drive uses rated torque/16, but if the motor cannot be accelerated to the required speed the drive then increases the torque progressively to $x{}^{1}{}_{8}$, $x{}^{1}{}_{4}$, $x{}^{1}{}_{2}$ and x1 rated torque. If the required speed is not achieved on the final attempt the test is aborted and a tunE1 trip is initiated. If the test is successful the acceleration and deceleration times are used to calculate the motor and load inertia which is then written to Pr **3.18**. The motor map parameters must be set up correctly including the power factor before performing an inertia measurement test. To perform an Inertia measurement autotune, set Pr **0.40** to 3, and provide the drive with both an enable signal (on terminal 31) and a run signal (on terminal 26 or 27).

Following the completion of an autotune test the drive will go into the inhibit state. The drive must be placed into a controlled disable condition before the drive can be made to run at the required reference. The drive can be put in to a controlled disable condition by removing the Secure Disable signal from terminal 31, setting the drive enable parameter Pr **6.15** to OFF (0) or disabling the drive via the control word (Pr **6.42** & Pr **6.43**).

Pr 5.16 Motor rated speed autotune

The motor rated speed parameter (Pr **0.45**) in conjunction with the motor rated frequency parameter (Pr **0.47**) defines the full load slip of the motor. The slip is used in the motor model for closed-loop vector control. The full load slip of the motor varies with rotor resistance which can vary significantly with motor temperature. When Pr **5.16** is set to 1 or 2 the drive can automatically sense if the value of slip defined by Pr **0.47** and Pr **0.45** has been set incorrectly or if it has varied with motor temperature. If the value is incorrect Pr **0.45** is automatically adjusted. Pr **0.45** is not saved at power-down, and so when the drive is powered-down and up again it will return to the last saved value. If the new value is required at the next power-up it must be saved by the user. Automatic optimisation is only enabled when the speed is above rated speed/8, and when the load on the motor load rises above $\frac{5}{8}$ rated load. Optimisation is disabled again if the load falls below $\frac{1}{2}$ rated load. For best optimisation results the correct values of stator resistance (Pr **5.17**), transient inductance (Pr **5.24**), stator inductance (Pr **5.25**) and saturation breakpoints (Pr **5.29**, Pr **5.30**) should be stored in the relevant parameters (all these can be measured by the drive by performing a rotating autotune). Motor rated speed autotune is not available if the drive is not using external position/speed feedback.

The gain of the optimiser, and hence the speed with which it converges, can be set at a normal low level when Pr **5.16** is set to 1. If this parameter is set to 2, the gain is increased by a factor of 16 to give faster convergence.

Pr 0.38 {4.13} / Pr 0.39 {4.14} Current loop gains

The current loop gains proportional (Kp) and integral (Ki) gains control the response of the current loop to a change in current (torque) demand. The default values give satisfactory operation with most motors. However, for optimal performance in dynamic applications it may be necessary to change the gains to improve the performance. The proportional gain (Pr **4.13**) is the most critical value in controlling the performance. The values for the current loop gains can be calculated by one of the following:

- During a stationary or rotating autotune (see *Autotune Pr* 0.40, earlier in this table) the drive measures the stator resistance (Pr 5.17) and transient inductance (Pr 5.24) of the motor and calculates the current loop gains.
- By setting Pr 0.40 to 4 the drive will calculate the current loop gains from the values of stator resistance (Pr 5.17) and transient inductance (Pr 5.24) set in the drive.

This will give a step response with minimum overshoot after a step change of current reference. The proportional gain can be increased by a factor of 1.5 giving a similar increase in bandwidth; however, this gives at step response with approximately 12.5% overshoot. The equation for the integral gain gives a conservative value. In some applications where it is necessary for the reference frame used by the drive to dynamically follow the flux very closely (i.e. high speed closed-loop induction motor applications) the integral gain may need to have a significantly higher value.

Safety InformationProduct InstallationMechanical InstallationElectrical StartedGetting ParametersBasic ParametersRunning the motorOptimisationSmartcard operationOnboard PLCAdvanced ParametersTechnical Data	Diagnostics UL Listing Information
--	------------------------------------

Speed loop gains (Pr 0.07 {3.10}, Pr 0.08 {3.11}, Pr 0.09 {3.12})

The speed loop gains control the response of the speed controller to a change in speed demand. The speed controller includes proportional (Kp) and integral (Ki) feed forward terms, and a differential (Kd) feedback term. The drive holds two sets of these gains and either set may be selected for use by the speed controller with Pr **3.16**. If Pr **3.16** = 0, gains Kp1, Ki1 and Kd1 (Pr **0.07** to Pr **0.09**) are used, and if Pr **3.16** = 1, gains Kp2, Ki2 and Kd2 (Pr **3.13** to Pr **3.15**) are used. Pr **3.16** may be changed when the drive is enabled or disabled. If the load is predominantly a constant inertia and constant torque, the drive can calculate the required Kp and Ki gains to give a required compliance angle or bandwidth dependant on the setting of Pr **3.17**.

Proportional gain (Kp), Pr 0.07 {3.10} and Pr 3.13

If the proportional gain has a value and the integral gain is set to zero the controller will only have a proportional term, and there must be a speed error to produce a torque reference. Therefore as the motor load increases there will be a difference between the reference and actual speeds. This effect, called regulation, depends on the level of the proportional gain, the higher the gain the smaller the speed error for a given load. If the proportional gain is too high either the acoustic noise produced by speed feedback quantisation becomes unacceptable, or the closed-loop stability limit is reached.

Integral gain (Ki), Pr 0.08 {3.11} and Pr 3.14

The integral gain is provided to prevent speed regulation. The error is accumulated over a period of time and used to produce the necessary torque demand without any speed error. Increasing the integral gain reduces the time taken for the speed to reach the correct level and increases the stiffness of the system, i.e. it reduces the positional displacement produced by applying a load torque to the motor. Unfortunately increasing the integral gain also reduces the system damping giving overshoot after a transient. For a given integral gain the damping can be improved by increasing the proportional gain. A compromise must be reached where the system response, stiffness and damping are all adequate for the application.

Differential gain (Kd), Pr 0.09 {3.12} and Pr 3.15

The differential gain is provided in the feedback of the speed controller to give additional damping. The differential term is implemented in a way that does not introduce excessive noise normally associated with this type of function. Increasing the differential term reduces the overshoot produced by under-damping, however, for most applications the proportional and integral gains alone are sufficient.

There are three methods of tuning the speed loop gains dependant on the setting of Pr 3.17:

1. Pr 3.17 = 0, User set-up.

This involves the connecting of an oscilloscope to analogue output 1 to monitor the speed feedback. Give the drive a step change in speed reference and monitor the

response of the drive on the oscilloscope.

The proportional gain (Kp) should be set up initially. The value

should be increased up to the point where the speed overshoots and then reduced slightly.

The integral gain (Ki) should then be increased up to the point where the speed becomes unstable and then reduced slightly.

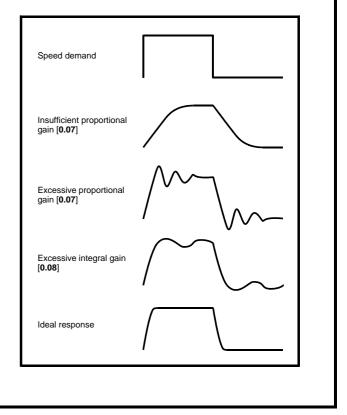
It may now be possible to increase the proportional gain to a higher value and the process should be repeated until the system response matches the ideal response as shown.

The diagram shows the effect of incorrect P and I gain settings as well as the ideal response.

2. Pr 3.17 = 1, Bandwidth set-up

If bandwidth based set-up is required, the drive can calculate Kp and Ki if the following parameters are set up correctly:

- Pr 3.20 Required bandwidth,
- Pr 3.21 Required damping factor,


Pr **3.18** - Motor and load inertia. The drive can be made to measure the motor and load inertia by performing an inertia measurement autotune (see Autotune Pr **0.40**, earlier in this table).

3. Pr 3.17 = 2, Compliance angle set-up

If compliance angle based set-up is required, the drive can calculate Kp and Ki if the following parameters are set up correctly:

- Pr 3.19 Required compliance angle,
- Pr 3.21 Required damping factor,

Pr **3.18** - Motor and load inertia The drive can be made to measure the motor and load inertia by performing an inertia measurement autotune (see Autotune Pr **0.40**, earlier in this table).

	afety rmation	Product Information	Mechanical Installation	Electrical Installation	Getting Started	Basic Parameters	Running the motor	Optimisation	Smartcard operation	Onboard PLC	Advanced Parameters	Technical Data	Diagnostics	UL Listing Information
8.1	.4	Servo m	notor cor	ntrol										
Pr	0.46 {	5.07} Moto	or rated cur	rent				Defines th	e maximu	m motor	continuou	s current		
The			•					ous current of	f the motor	. The mot	or rated cur	rent is us	ed in the fo	ollowing:
•		•	ee section 8					,	ana 140 fa	r mara inf	(ormation)			
•			-		e section	5.4 1/10101	inernai pro	otection on pa	-					
			or number o		noo tho n	umber of c	lootrical ra	Defines the evolutions in contract of the evolution of th			•	of the m	otor Thio n	oromotor
mu	st be s	set correctl	y for the co					n Pr 0.42 is s					otor. This p	arameter
Pr	0.40 {	5.12} Auto	otune											
								est, a normal						
	•		0			•	•	A normal low ates the curre	•					
			ly to a short						in loop gu					.0
•								i.e. up to 2 m						
								coder phase						
								used where th						
		•						oth an enable	U		,	. .		,
•								i.e. up to 2 me ase angle (Pr						
				-			•	he motor whe	,	•	-			
			,	•	,			ne values are		•		•		
								ed with motors notor that pro						
						•		irrent is unlike					, ,	
	could	permanen	tly de-magne	etise the ma	agnets the	rated curr	ent should	be set to a lov	wer level fo	or the tests	to avoid this	s. To perfo	orm a norma	
	speed	d autotune,	set Pr 0.40	to 2, and p	rovide the	drive with	both an ena	able signal (or	n terminal 3	31) and a r	run signal (o	n termina	26 or 27).	
•			surement te ovide torque					d and the mo	otor. This is	s used to s	set the spee	ed loop ga	ins (see Sp	beed loop
								motor in the o	direction se	elected up t	to ³ /, x rate	d load rom	and then b	ack to
		-				•		elerated to the		•		•		
								ed on the final						
								te the motor a						
								r 5.08 must b						
	•	errorm an Ir erminal 26		Jrement au	itotune, se	et Pr 0.40 t	o 3, and pr	ovide the driv	e with bot	n an enab	ie signai (or	n terminal	31) and a r	run signai
•	<u>`</u> .		,	o current co	ontroller g	ains meas	ures the st	ator resistand	ce and the	transient	inductance	of the mo	tor, calcula	ites the
			•		•	• •		s test does no			•	0		-
	•				-			f the phasing jains, set Pr (-			•		-
			d a run signa					jains, set i t	0.40 to 4, c					Signal (On
•			•	-			•	offset by mov	-	-		-	•	
								the motor ba til the moven		U 1			0	
	-	•	•••				,	ngle. To perfe					•	
	•				-		,	un signal (on		,				
	-	•				-		ibit state. The can be put ir		•				
					•			15 to OFF (0)				•	-	
		-	s (Pr 0.38 {4	-		-				0				,
							control the	e response of	f the currer	nt loop to a	a change in	current (t	orque) dem	nand. The
def	ault va	alues give s	satisfactory	operation v	with most	motors. H	owever, for	optimal perf	ormance ii	n dynamic	application	s it may b	e necessa	ry to
	-	-	improve the gains can b	•		•		4.13) is the n	nost critica	I value in	controlling	the perfor	mance. The	e values
•		•	-		•		-	r in this table	e) the drive	measure	s the stator	resistanc	e (Pr 5.17)	and
	transi	ient inducta	ance (Pr 5.2	24) of the m	notor and	calculates	the curren	t loop gains.					. ,	
•	-	-		drive will ca	alculate th	e current le	oop gains f	rom the valu	es of stato	r resistand	ce (Pr 5.17)	and trans	sient induct	ance
Thi	·	.24) set in t give a step		/ith minimu	m oversh	oot after a	step chance	ge of current	reference	The prope	ortional dair	n can be i	ncreased h	y a factor
of 1	.5 givi	ing a simila	ar increase i	n bandwidt	h; howeve	er, this give	s at step re	esponse with	approxima	ately 12.5%	% overshoo	t. The equ	ation for th	e integral
-	-							ary for the ref			•	•	•	w the flux

Safety Product Mechanical Electrical Getting Basic Running the Optimisation Information Installation Installation Started Parameters motor Optimisation	n Smartcard operation	Onboard PLC	Advanced Parameters	Technical Data	Diagnostics .	UL Listing Information
---	-----------------------	----------------	------------------------	-------------------	---------------	---------------------------

Speed loop gains (Pr 0.07 {3.10}, Pr 0.08 {3.11}, Pr 0.09 {3.12})

The speed loop gains control the response of the speed controller to a change in speed demand. The speed controller includes proportional (Kp) and integral (Ki) feed forward terms, and a differential (Kd) feedback term. The drive holds two sets of these gains and either set may be selected for use by the speed controller with Pr 3.16. If Pr 3.16 = 0, gains Kp1, Ki1 and Kd1 (Pr 0.07 to Pr 0.09) are used, and if Pr 3.16 = 1, gains Kp2, Ki2 and Kd2 (Pr 3.13 to Pr 3.15) are used. Pr 3.16 may be changed when the drive is enabled or disabled. If the load is predominantly a constant inertia and constant torque, the drive can calculate the required Kp and Ki gains to give a required compliance angle or bandwidth dependant on the setting of Pr 3.17.

Proportional gain (Kp), Pr 0.07 {3.10} and Pr 3.13

If the proportional gain has a value and the integral gain is set to zero the controller will only have a proportional term, and there must be a speed error to produce a torque reference. Therefore as the motor load increases there will be a difference between the reference and actual speeds. This effect, called regulation, depends on the level of the proportional gain, the higher the gain the smaller the speed error for a given load. If the proportional gain is too high either the acoustic noise produced by speed feedback quantisation becomes unacceptable, or the closed-loop stability limit is reached.

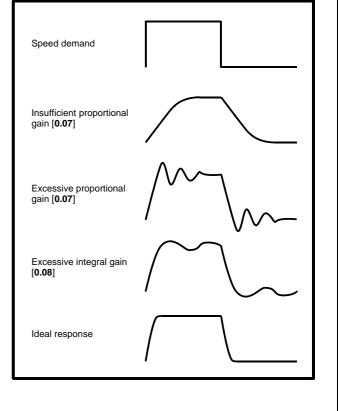
Integral gain (Ki), Pr 0.08 {3.11} and Pr 3.14

The integral gain is provided to prevent speed regulation. The error is accumulated over a period of time and used to produce the necessary torque demand without any speed error. Increasing the integral gain reduces the time taken for the speed to reach the correct level and increases the stiffness of the system, i.e. it reduces the positional displacement produced by applying a load torque to the motor. Unfortunately increasing the integral gain also reduces the system damping giving overshoot after a transient. For a given integral gain the damping can be improved by increasing the proportional gain. A compromise must be reached where the system response, stiffness and damping are all adequate for the application.

Differential gain (Kd), Pr 0.09 {3.12} and Pr 3.15

The differential gain is provided in the feedback of the speed controller to give additional damping. The differential term is implemented in a way that does not introduce excessive noise normally associated with this type of function. Increasing the differential term reduces the overshoot produced by under-damping, however, for most applications the proportional and integral gains alone are sufficient.

There are three methods of tuning the speed loop gains dependant on the setting of Pr 3.17:


1. Pr 3.17 = 0, User set-up.

This involves the connecting of an oscilloscope to analogue output 1 to monitor the speed feedback. Give the drive a step change in speed reference and monitor the response of the drive on the oscilloscope. The proportional gain (Kp) should be set up initially. The value should be increased up to the point where the speed overshoots and then reduced slightly. The integral gain (Ki) should then be increased up to the point where the speed becomes unstable and then reduced slightly. It may now be possible to increase the proportional gain to a higher value and the process should be repeated until the system response matches the ideal response as shown. The diagram shows the effect of incorrect P and I gain settings as well as the ideal response. 2. Pr 3.17 = 1, Bandwidth set-up If bandwidth based set-up is required, the drive can calculate Kp and Ki if the following parameters are set up correctly: Pr 3.20 - Required bandwidth, Pr 3.21 - Required damping factor. Pr 5.32 - Motor torque per amp (Kt). Pr 3.18 - Motor and load inertia. The drive can be made to measure the motor and load inertia by performing an inertia measurement autotune (see Autotune Pr 0.40, earlier in this table).

3. Pr 3.17 = 2. Compliance angle set-up

- If compliance angle based set-up is required, the drive can calculate Kp and Ki if the following parameters are set up correctly:
 - Pr 3.19 Required compliance angle,
 - Pr 3.21 Required damping factor,
 - Pr 5.32 Motor torque per amp (Kt).

Pr 3.18 - Motor and load inertia The drive can be made to measure the motor and load inertia by performing an inertia measurement autotune (see Autotune Pr 0.40, earlier in this table).

1	Safety	Product	Mechanical	Electrical	Getting	Basic	Running the	Ontimication	Smartcard	Onboard	Advanced	Technical	Diagnostics	UL Listing
	Information	Information	Installation	Installation	Started	Parameters	motor	Optimisation	operation	PLC	Parameters	Data	Diagnostics	Information

8.2 Maximum motor rated current

The maximum motor rated current allowed by the drive is greater than the maximum Heavy Duty current rating in Pr **11.32**. The ratio between the Normal Duty rating and the Heavy Duty rating (Pr **11.32**) varies between drive sizes. The values for the Normal and Heavy Duty rating can be found in section 2.1 *Ratings* on page 11.

If the motor rated current (Pr **0.46**) is set above the maximum Heavy Duty current rating (Pr **11.32**), the current limits and the motor thermal protection scheme are modified (see section 8.3 *Current limits* and section 8.4 *Motor thermal protection*, for more information).

8.3 Current limits

The default settings for the current limit parameters for Unidrive SP sizes 1 to 5 are:

• 165% x motor rated current for open loop mode

• 175% x motor rated current for closed loop vector and servo modes (except SP2403 which is 150.1% for open loop, 175% for closed loop vector and 161.2% for servo).

The default settings for the current limit parameters for Unidrive SP size 6 are:

- 138.1% x motor rated current for open loop mode
- 165.7% x motor rated current for closed loop vector mode
- 150% x motor rated current for servo mode

There are three parameters which control the current limits:

- Motoring current limit: power flowing from the drive to the motor
- Regen current limit: power flowing from the motor to the drive
- Symmetrical current limit: current limit for both motoring and regen
 operation

The lowest of either the motoring and regen current limit, or the symmetrical current limit applies.

The maximum setting of these parameters depends on the values of motor rated current, drive rated current and the power factor.

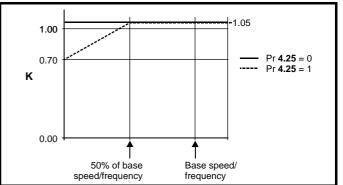
Increasing the motor rated current (Pr **0.46/5.07**) above the Heavy Duty rating (default value), will automatically reduce the current limits in Pr **4.05** to Pr **4.07**. If the motor rated current is then set to or below the Heavy Duty rating, the current limits will be left at their reduced values.

The drive can be oversized to permit a higher current limit setting to provide higher accelerating torque as required up to a maximum of 1000%.

8.4 Motor thermal protection

Unidrive SP models the temperature of the motor using the motor rated current (Pr **5.07**), the thermal time constant (Pr **4.15**), whether low speed thermal protection mode has been enabled (Pr **4.25**) and the actual current flowing at any point in time. Pr **4.19** gives the estimated motor temperature as a percentage of maximum temperature.

The temperature of the motor (Pr **4.19**) as a percentage of maximum temperature, with a constant current magnitude of I, constant value of K and constant value of Motor rated current (Pr **5.07**) after time t is given by:


Percentage motor temperature (Pr **4.19**) = $[I^2 / (K \times Motor rated current)^2]$ (1 - $e^{-t/\tau}$) x 100%

This assumes that the maximum allowed motor temperature is produced by K x Motor rated current and that τ is the thermal time constant of the point in the motor that reaches its maximum allowed temperature first. τ is defined by Pr **4.15**. If Pr **4.15** has a value between 0.0 and 1.0 the thermal time constant is taken as 1.0.

The value of K is defined as shown in Figure 8-1 and Figure 8-2.

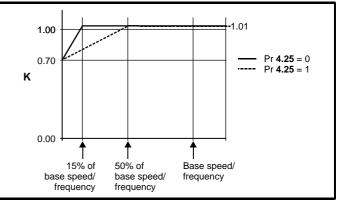

For both Heavy and Normal duty ratings, Pr **4.25** can be used to select two alternative protection characteristics.

Figure 8-1 Motor thermal protection (Heavy Duty)

If Pr **4.25** is 0 the characteristic is for a motor which can operate at rated current over the whole speed range. Induction motors with this type of characteristic normally have forced cooling. If Pr **4.25** is 1 the characteristic is intended for motors where the cooling effect of motor fan reduces with reduced motor speed below 50% of base speed/ frequency. The maximum value for K is 1.05, so that above the knee of the characteristics the motor can operate continuously up to 1.05% current.

Both settings of Pr **4.25** are intended for motors where the cooling effect of the motor fan reduces with reduced motor speed, but with different speeds below which the cooling effect is reduced. If Pr **4.25** is 0 the characteristic is intended for motors where the cooling effect reduces with motor speed below 15% of base speed/frequency. If Pr **4.25** is 1 the characteristic is intended for motors where the cooling effect reduces with motor speed below 50% of base speed/frequency. The maximum value for K is 1.01, so that above the knee of the characteristics the motor can operate continuously up to 1.01% current.

When the estimated temperature in Pr **4.19** reaches 100% the drive takes some action depending on the setting of Pr **4.16**. If Pr **4.16** is 0, the drive trips when Pr **4.19** reaches 100%. If Pr **4.16** is 1, the current limit is reduced to $(K - 0.05) \times 100\%$ when Pr **4.19** reaches 100%. The current limit is set back to the user defined level when Pr **4.19** falls below 95%. In servo mode the current magnitude and the active current controlled by the current limits should be similar, and so this system should ensure that the motor operates just below its thermal limit.

The thermal model temperature accumulator is reset to zero at power-up and accumulates the temperature of the motor whilst the drive remains powered-up. If the rated current defined by Pr **5.07** is altered, the accumulator is reset to zero.

The default setting of the thermal time constant (Pr **4.15**) is 89s for an induction motor (open loop and closed loop vector), which is equivalent to an overload of 150% for 60s from cold. The default value for a servo motor is 20s, which is equivalent to an overload of 175% for 9s from cold.

Safety Information	Product Information	Mechanical Installation	Electrical Installation	Getting Started	Basic Parameters	Running the motor	Optimisation	Smartcard operation	Onboard PLC	Advanced Parameters	Technical Data	Diagnostics	UL Listing Information

The time for the drive to trip from cold with constant motor current is given by:

T_{trip} = -(Pr **4.15**) x ln(1 - (K x Pr **5.07** / Pr **4.01**)²)

Alternatively the thermal time constant can be calculated from the trip time with a given current from:

 $Pr 4.15 = -T_{trip} / ln(1 - (K / Overload)^2)$

For example, if the drive should trip after supplying 150% overload for 60s with K = 1.05 (Heavy Duty) then:

The maximum value for the thermal time constant can be increased up to a maximum value of 400s to allow an increased overload if the motor thermal characteristics permit.

For applications using Unimotors the thermal time constants can be found in the Unimotor manual.

8.5 Switching frequency

The default switching frequency is 3kHz (6kHz in Servo mode), however this can be increased up to a maximum of 16kHz by Pr **5.18** (dependent on drive size). The available switching frequencies are shown below.

Table 8-1 Available switching frequencies for drives

Drive size	Voltage rating	3kHz	4kHz	6kHz	8kHz	12kHz	16kHz
1	All	\checkmark	~	\checkmark	\checkmark	~	~
2	All	~	~	\checkmark	~	~	~
	SP320X	√	✓	√	√	~	
3	SP3401 & SP3402	~	~	~	~	~	~
	SP3403	~	✓	✓	✓	✓	
	SP350X	√	√	~	√		
4	All	~	~	~	~		
5	All	√	√	√	√		
6	All	√	✓	√			

Table 8-2 Available switching frequencies for free standing cubicle drives

Drive size	Voltage rating	3kHz	4kHz	6kHz	8kHz	12kHz	16kHz
6	All	~	~	\checkmark			
7	All	~	~	~			
8	All	~	~	~			
9	All	√	✓	√			

If switching frequency is increased from 3kHz the following apply:

1. Increased heat loss in the drive, which means that derating to the output current must be applied.

See the derating tables for switching frequency and ambient temperature in section 12.1.1 *Power and current ratings (Derating for switching frequency and temperature)* on page 257.

- 2. Reduced heating of the motor due to improved output waveform quality.
- 3. Reduced acoustic noise generated by the motor.
- Increased sample rate on the speed and current controllers. A trade off must be made between motor heating, drive heating and the demands of the application with respect to the sample time required.

Table 8-3 Sample rates for various control tasks at each switching frequency

	3, 6, 12 kHz	4, 8, 16 kHz	Open loop	Closed loop vector and Servo
Level 1	3kHz = 167μs 6kHz = 83μs 12kHz = 83μs	125µs	Peak limit	Current controllers
Level 2	250µs		Current limit and ramps	Speed controller and ramps
Level 3	1ms		Voltage	e controller
Level 4	4ms		Time critica	l user interface
Background			Non-time criti	cal user interface

8.6 High speed operation

8.6.1 Encoder feedback limits

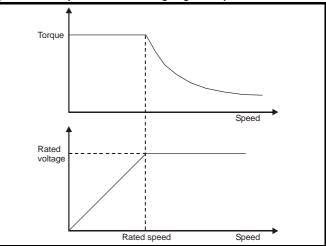
The maximum encoder frequency should be prevented from exceeding 500kHz (or 410kHz for software V01.06.00 and earlier). In closed loop and servo modes the maximum speed that can be entered in to the speed reference clamps (Pr **1.06** and Pr **1.07**) can be limited by the drive. This is defined by the following (subject to an absolute maximum of 40,000rpm):

Maximum speed limit (rpm) = $\frac{500 \text{kHz} \times 60}{\text{ELPR}}$ = $\frac{3.0 \times 10^7}{\text{ELPR}}$

Where:

ELPR is the equivalent encoder lines per revolution and is the number of lines that would be produced by a quadrature encoder.

- Quadrature encoder ELPR = number of lines per revolution
- F and D encoder ELPR = number of lines per revolution / 2
- SINCOS encoder ELPR = number of sine waves per revolution


This maximum speed limit is defined by the device selected with the speed feedback selector (Pr **3.26**), and the ELPR set for the position feedback device. In closed-loop vector mode it is possible to disable this limit via Pr **3.24**, so that the drive can be switched between operation with and without feedback when the speed becomes too high for the feedback device. The maximum speed limit is defined as above when Pr **3.24** = 0 or 1, and is 40,000rpm when Pr **3.24** = 2 or 3.

8.6.2 Field weakening (constant power) operation (Open loop and closed loop vector mode only)

(Open loop and closed loop vector mode only)

Unidrive SP can be used to run an induction machine above synchronous speed into the constant power region. The speed continues to increase and the available shaft torque reduces. The characteristics below show the torque and output voltage characteristics as the speed is increased above the rated value.

Figure 8-3 Torque and rated voltage against speed

Safety Information	Product Information	Mechanical Installation	Electrical Installation	Getting Started	Basic Parameters	Running the motor	Optimisation	Smartcard operation	Onboard PLC	Advanced Parameters	Technical Data	Diagnostics	UL Listing Information
-----------------------	------------------------	----------------------------	----------------------------	--------------------	---------------------	----------------------	--------------	---------------------	----------------	------------------------	-------------------	-------------	---------------------------

Care must be taken to ensure the torque available above base speed is sufficient for the application to run satisfactorily.

The saturation breakpoint parameters (Pr **5.29** and Pr **5.30**) found during the autotune in closed loop vector mode ensure the magnetising current is reduced in the correct proportion for the specific motor. (In open loop mode the magnetising current is not actively controlled.)

8.6.3 Servo high speed operation

High speed servo mode is enabled by setting Pr **5.22** =1. Care must be taken when using this mode with servo motors to avoid damaging the drive. The voltage produced by the servo motor magnets is proportional to speed. For high speed operation the drive must apply currents to the motor to counter-act the flux produced by the magnets. It is possible to operate the motor at very high speeds that would give a very high motor terminal voltage, but this voltage is prevented by the action of the drive. If however, the drive is disabled (or tripped) when the motor voltages would be higher than the rating of the drive without the currents to counter-act the flux from the magnets, it is possible to damage the drive. If high speed mode is enabled the motor speed must be limited to the levels given in the table below unless an additional hardware protection system is used to limit the voltages applied to the drive output terminals to a safe level.

Drive voltage rating	Maximum motor speed (rpm)	Maximum safe line to line voltage at the motor terminals (V rms)					
200	400 / (Ke x √2)	400 / √2					
400	800 / (Ke x √2)	800 / √2					
575	955 / (Ke x √2)	955 / √2					
690	1145 / (Ke x √2)	1145 / √2					

Ke is the ratio between r.m.s. line to line voltage produced by the motor and the speed in V/rpm. Care must also be taken not to de-magnetise the motor. The motor manufacturer should always be consulted before using this mode.

8.6.4 Switching frequency

With a default switching frequency of 3 kHz the maximum output frequency should be limited to 250 Hz. Ideally a minimum ratio of 12:1 should be maintained between the output frequency and the switching frequency. This ensures the number of switchings per cycle is sufficient to ensure the output waveform quality is maintained at a minimum level. If this is not possible, quasi-square switching should be enabled (Pr **5.20** =1). The output waveform will be quasi square above base speed ensuring a symmetrical output waveform, which results in a better quality output than would otherwise result.

8.6.5 Maximum speed / frequency

In open loop mode the maximum frequency is 3,000 Hz.

In closed loop vector mode the maximum output frequency is 600 Hz.

In servo mode the maximum output frequency is 1250Hz, however the speed is limited by the voltage constant (Ke) of the motor. Ke is a specific constant for the servo motor being used. It can normally be found on the motor data sheet in V/krpm (volts per 1,000rpm).

8.6.6 Quasi-Square wave (open-loop only)

The maximum output voltage level of the drive is normally limited to an equivalent of the drive input voltage minus voltage drops within the drive (the drive will also retain a few percent of the voltage in order to maintain current control). If the motor rated voltage is set at the same level as the supply voltage, some pulse deletion will occur as the drive output voltage approaches the rated voltage level. If Pr **5.20** (Quasi-square wave enable) is set to 1 the modulator will allow over modulation, so that as the output frequency increases beyond the rated frequency the voltage continues to increase above the rated voltage. The modulation depth will increase beyond unity; first producing trapezoidal and then quasi-square waveforms.

This can be used for example:

 To obtain high output frequencies with a low switching frequency which would not be possible with space vector modulation limited to unity modulation depth,

In order to maintain a higher output voltage with a low supply voltage.

The disadvantage is that the machine current will be distorted as the modulation depth increases above unity, and will contain a significant amount of low order odd harmonics of the fundamental output frequency. The additional low order harmonics cause increased losses and heating in the motor.

or

Safety Information	Product Information	Mechanical Installation	Electrical Installation	Getting Started	Basic Parameters	Running the motor	Optimisation	Smartcard operation	Onboard PLC	Advanced Parameters	Technical Data	Diagnostics	UL Listing Information
-----------------------	------------------------	----------------------------	----------------------------	--------------------	---------------------	-------------------	--------------	---------------------	----------------	------------------------	-------------------	-------------	---------------------------

9 SMARTCARD operation

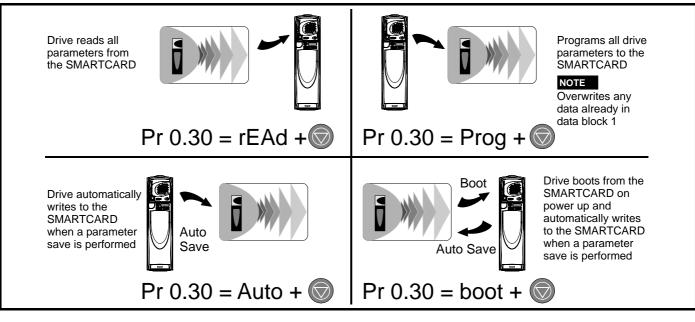
9.1 Introduction

This is a standard feature that enables simple configuration of parameters in a variety of ways. The SMARTCARD can be used for:

- Parameter cloning between drives
- Saving whole drive parameter sets
- Saving 'differences from default' parameter sets
- Storing Onboard PLC programs
- Automatically saving all user parameter changes for maintenance purposes
- Loading complete motor map parameters

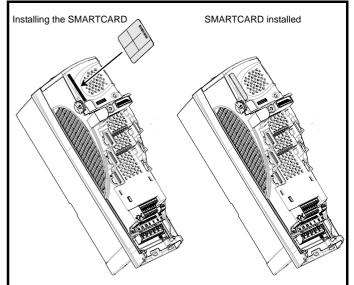
The SMARTCARD is located at the top of the module under the drive display (if fitted) on the left-hand side. Ensure the SMARTCARD is inserted with the contacts facing the right-hand side of the drive.

The drive only communicates with the SMARTCARD when commanded to read or write, meaning the card may be "hot swapped".


Encoder phase angle (servo mode only)

With drive software version V01.08.00 onwards, the encoder phase angles in Pr **3.25** and Pr **21.20** are cloned to the SMARTCARD when using any of the SMARTCARD transfer methods.

With drive software version V01.05.00 to V01.07.01, the encoder phase angles in Pr **3.25** and Pr **21.20** are only cloned to the SMARTCARD when using either Pr **0.30** set to Prog (2) or Pr **xx.00** set to 3yyy.


This is useful when the SMARTCARD is used to back-up the parameter set of a drive but caution should be used if the SMARTCARD is used to transfer parameter sets between drives. Unless the encoder phase angle of the servo motor connected to the destination drive is known to be the same as the servo motor connected to the source drive, an autotune should be performed or the encoder phase angle should be entered manually into Pr 3.25 (or Pr 21.20). If the encoder phase angle is incorrect the drive may lose control of the motor resulting in an O.SPd or Enc10 trip when the drive is enabled. With drive software version V01.04.00 and earlier, or when using software version V01.05.00 to V01.07.01 and Pr xx.00 set to 4yyy is used, then the encoder phase angles in Pr 3.25 and Pr 21.20 are not cloned to the SMARTCARD. Therefore, Pr 3.25 and Pr 21.20 in the destination would not be changed during a transfer of this data block from the SMARTCARD.

Easy saving and reading Figure 9-2 Basic SMARTCARD operation

Unidrive SP User Guide Issue Number: 11

Figure 9-1 Installation of the SMARTCARD

1	Safety	Product	Mechanical	Electrical	Getting	Basic	Running the	Optimisation	Smartcard	Onboard	Advanced	Technical	Diagnostics	UL Listing
	Information	Information	Installation	Installation	Started	Parameters	motor	Optimisation	operation	PLC	Parameters	Data	Diagnostics	Information

The SMARTCARD has 999 individual data block locations. Each individual location from 1 to 499 can be used to store data until the capacity of the SMARTCARD is used. With software V01.07.00 and later the drive can support SMARTCARDs with a capacity of between 4kB and 512kB. With software V01.06.02 and earlier the drive can support SMARTCARDs with a capacity of 4kB.

The data block locations of the SMARTCARD are arranged to have the following usage:

Table 9-1 SMARTCARD data blocks

Data Block	Туре	Example Use
1 to 499	Read / Write	Application set ups
500 to 999	Read Only	Macros

'Differences from default' parameter sets will be much smaller than whole parameter sets and thus take up a lot less memory as most applications only require a few parameters to be changed from the default setting.

The whole card may be protected from writing or erasing by setting the read-only flag as detailed section 9.2.9 *9888 / 9777 - Setting and clearing the SMARTCARD read only flag* on page 153.

Data transfer to or from the SMARTCARD is indicated by one the following:

- SM-Keypad: The decimal point after the fourth digit in the upper display will flash.
- SM-Keypad Plus: The symbol 'CC' will appear in the lower left hand corner of the display

The card should not be removed during data transfer, as the drive will produce a trip. If this occurs then either the transfer should be reattempted or in the case of a card to drive transfer, default parameters should be loaded.

9.2 Transferring data

Data transfer, erasing and protecting the information is performed by entering a code in Pr **xx.00** and then resetting the drive as shown in Table 9-2.

Table 9	9-2 SMARTCARD codes
Code	Action
2001	Transfer drive parameters as difference from defaults to a bootable SMARTCARD block in data block number 001
Зууу	Transfer drive parameters to a SMARTCARD block number yyy
4ууу	Transfer drive data as difference from defaults to SMARTCARD block number yyy
5ууу	Transfer drive Onboard PLC program to SMARTCARD block number yyy
6ууу	Transfer SMARTCARD data block yyy to the drive
7ууу	Erase SMARTCARD data block yyy
8ууу	Compare drive parameters with block yyy
9555	Clear SMARTCARD warning suppression flag (V01.07.00 and later)
9666	Set SMARTCARD warning suppression flag (V01.07.00 and later)
9777	Clear SMARTCARD read-only flag
9888	Set SMARTCARD read-only flag
9999	Erase SMARTCARD

Where yyy indicates the block number 001 to 999. See Table 9-1 for restrictions on block numbers.

NOTE

If the read only flag is set then only codes 6yyy or 9777 are effective.

9.2.1 Writing to the SMARTCARD

3yyy - Transfer data to the SMARTCARD

The data block contains the complete parameter data from the drive, i.e. all user save (US) parameters except parameters with the NC coding bit set. Power-down save (PS) parameters are not transferred to the SMARTCARD.

With software V01.06.02 and earlier, a save must have been performed on the drive to transfer the parameters from the drive RAM to the EEPROM before the transfer to the SMARTCARD is carried out.

4yyy - Write default differences to a SMARTCARD

The data block only contains the parameter differences from the last time default settings were loaded.

Six bytes are required for each parameter difference. The data density is not as high as when using the 3yyy transfer method as described in the previous section, but in most cases the number of differences from default is small and the data blocks are therefore smaller. This method can be used for creating drive macros. Power-down save (PS) parameters are not transferred to the SMARTCARD.

The data block format is different depending on the software version. The data block holds the following parameters:

Software V01.06.02 and earlier

All user save (US) parameters, except those with the NC (Not Cloned) coding bit set or those that do not have a default value, can be transferred to the SMARTCARD.

Software V01.07.xx

All user save (US) parameters, except those with the NC (Not Cloned) coding bit set or those that do not have a default value, can be transferred to the SMARTCARD. In addition to these parameters all menu 20 parameters (except Pr **20.00**), can be transferred to the SMARTCARD even though they are not user save parameters and have the NC coding bit set.

Software V01.08.00 onwards

All user save (US) parameters including those that do not have a default value (i.e. Pr **3.25** or Pr **21.20** *Encoder phase angle*), but not including those with the NC (Not Cloned) coding bit set can be transferred to the SMARTCARD. In addition to these parameters all menu 20 parameters (except Pr **20.00**), can be transferred to the SMARTCARD even though they are not user save parameters and have the NC coding bit set.

It is possible to transfer parameters between drive with each of the different formats, however, the data block compare function does not work with data produced by different formats.

Writing a parameter set to the SMARTCARD (Pr 11.42 = Prog (2))

Setting Pr **11.42** to Prog (2) and resetting the drive will save the parameters to the SMARTCARD, i.e. this is equivalent to writing 3001 to Pr **xx.00**. All SMARTCARD trips apply except 'C.Chg'. If the data block already exists it is automatically overwritten. When the action is complete this parameter is automatically reset to nonE (0).

9.2.2 Reading from the SMARTCARD 6yyy - Read default differences from a SMARTCARD

When the data is transferred back to a drive, using 6yyy in Pr **xx.00**, it is transferred to the drive RAM and the drive EEPROM. A parameter save is not required to retain the data after power-down. Set up data for any Solutions Modules fitted are stored on the card and are transferred to the destination drive. If the Solutions Modules are different between the source and destination drive, the menus for the slots where the Solutions Module categories are different are not updated from the card and will contain their default values after the cloning action. The drive will produce a 'C.Optn' trip if the Solutions Modules fitted to the source and destination drive are different or are in different slots. If the data is being transferred to a drive of a different voltage or current rating a 'C.rtg' trip will occur.

The following rating dependent parameters (RA coding bit set) will not be written to the destination drive and will contain their default values after the cloning action:

Safety Information	Product Information	Mechanical Installation	Electrical Installation	Getting Started	Basic Parameters	Running the motor	Optimisation	Smartcard operation	Onboard PLC	Advanced Parameters	Technical Data	Diagnostics	UL Listing Information
monnation	monnation	motanation	motuliation	Oldridd	1 dramotoro	motor		operation	1 20	1 urumetere	Dulu		monnation

Pr 2.08 Standard ramp voltage

Pr 4.05 to Pr 4.07 and Pr 21.27 to Pr 21.29 Current limits

- Pr 4.24, User current maximum scaling
- Pr 5.07, Pr 21.07 Motor rated current
- Pr 5.09, Pr 21.09 Motor rated voltage
- Pr 5.10, Pr 21.10 Rated power factor
- Pr 5.17, Pr 21.12 Stator resistance
- Pr 5.18 Switching frequency
- Pr 5.23, Pr 21.13 Voltage offset Pr 5.24, Pr 21.14 Transient inductance
- Pr 5.25, Pr 21.24 Stator inductance
- Pr 6.06 DC injection braking current
- Pr 6.48 Mains loss ride through detection level

Reading a parameter set from the SMARTCARD (Pr 11.42 = rEAd(1))

Setting Pr **11.42** to rEAd (1) and resetting the drive will transfer the parameters from the card into the drive parameter set and the drive EEPROM, i.e. this is equivalent to writing 6001 to Pr **xx.00**. All SMARTCARD trips apply. Once the parameters are successfully copied this parameter is automatically reset to nonE (0). Parameters are saved to the drive EEPROM after this action is complete.

NOTE

This operation is only performed if data block 1 on the card is a full parameter set (3yyy transfer) and not a default difference file (4yyy transfer). If block 1 does not exist a 'C.dAt' trip occurs.

9.2.3 Auto saving parameter changes (Pr 11.42 = Auto (3))

This setting causes the drive to automatically save any changes made to menu 0 parameters on the drive to the SMARTCARD. The latest menu 0 parameter set in the drive is therefore always backed up on the SMARTCARD. Changing Pr **11.42** to Auto (3) and resetting the drive will immediately save the complete parameter set from the drive to the card, i.e. all user save (US) parameters except parameters with the NC coding bit set. Once the whole parameter set is stored only the individual modified menu 0 parameter setting is updated.

Advanced parameter changes are only saved to the card when Pr **xx.00** is set to a 1000 and the drive reset.

All SMARTCARD trips apply, except 'C.Chg'. If the data block already contains information it is automatically overwritten.

If the card is removed when Pr **11.42** is set to 3 Pr **11.42** is then automatically set to nonE (0).

When a new SMARTCARD is fitted Pr **11.42** must be set back to Auto (3) by the user and the drive reset so the complete parameter set is rewritten to the new SMARTCARD if auto mode is still required.

When Pr **11.42** is set to Auto (3) and the parameters in the drive are saved, the SMARTCARD is also updated, therefore the SMARTCARD becomes a copy of the drives stored configuration.

At power up, if Pr **11.42** is set to Auto (3), the drive will save the complete parameter set to the SMARTCARD. The drive will display 'cArd' during this operation. This is done to ensure that if a user puts a new SMARTCARD in during power down the new SMARTCARD will have the correct data.

NOTE

When Pr **11.42** is set to Auto (3) the setting of Pr **11.42** itself is saved to the drive EEPROM but NOT to the SMARTCARD.

9.2.4 Booting up from the SMARTCARD on every power up (Pr 11.42 = boot (4))

When Pr **11.42** is set to boot (4) the drive operates the same as Auto mode except when the drive is powered-up. The parameters on the SMARTCARD will be automatically transferred to the drive at power up if the following are true:

- A card is inserted in the drive
- Parameter data block 1 exists on the card
- The data in block 1 is type 1 to 5 (as defined in Pr 11.38)
- Pr **11.42** on the card set to boot (4)

The drive will display 'boot' during this operation. If the drive mode is

different from that on the card, the drive gives a 'C.Typ'. trip and the data is not transferred.

If 'boot' mode is stored on the cloning SMARTCARD this makes the cloning SMARTCARD the master device. This provides a very fast and efficient way of re-programming a number of drives.

If data block 1 contains a bootable parameter set and data block 2 contains an Onboard PLC program (type 17 as defined in Pr **11.38**), then if the drive software version is V01.07.00 and later, the onboard PLC program will be transferred to the drive at power up along with the parameter set in data block 1.

NOTE

'Boot' mode is saved to the card, but when the card is read, the value of Pr **11.42** is not transferred to the drive.

9.2.5 Booting up from the SMARTCARD on every power up (Pr xx.00 = 2001), software V01.08.00 and later

It is possible to create a difference from default bootable file by setting Pr **xx.00** to 2001 and resetting the drive. This type of file causes the drive to behave in the same way at power-up as a file created with boot mode set up with Pr **11.42**. The difference from the default file is that it has the added advantage of including menu 20 parameters.

Setting Pr **xx.00** to 2001 will overwrite data block 1 on the card if it already exists.

If a data block 2 exists and contains an Onboard PLC program (type 17 as defined in Pr 11.38), this will also be loaded after the parameters have been transferred

A bootable difference from default file can only be created in one operation and parameters cannot be added as they are save via menu 0.

9.2.6 8yyy - Comparing the drive full parameter set with the SMARTCARD values

Setting 8yyy in Pr **xx.00**, will compare the SMARTCARD file with the data in the drive. If the compare is successful Pr **xx.00** is simply set to 0. If the compare fails a 'C.cpr' trip is initiated.

9.2.7 7yyy / 9999 - Erasing data from the SMARTCARD

Data can be erased from the SMART CARD either one block at a time or blocks 1 to 499 in one go.

- Setting 7yyy in Pr **xx.00** will erase SMART CARD data block yyy.
- Setting 9999 in Pr xx.00 will erase SMART CARD data blocks 1 to 499

9.2.8 9666 / 9555 - Setting and clearing the SMARTCARD warning suppression flag (V01.07.00 and later)

If the Solutions Modules fitted to the source and destination drive are different or are in different slots the drive will produce a 'C.Optn' trip. If the data is being transferred to a drive of a different voltage or current rating a 'C.rtg' trip will occur. It is possible to suppress these trips by setting the warning suppression flag. If this flag is set the drive will not trip if the Solutions Module(s) or drive ratings are different between the source and destination drives. The Solutions Module or rating dependent parameters will not be transferred.

- Setting 9666 in Pr xx.00 will set the warning suppression flag
- Setting 9555 in Pr xx.00 will clear the warning suppression flag

9.2.9 9888 / 9777 - Setting and clearing the SMARTCARD read only flag

The SMART CARD may be protected from writing or erasing by setting the read only flag. If an attempt is made to write or erase a data block when the read only flag is set, a 'C.rdo' trip is initiated. When the read only flag is set only codes 6yyy or 9777 are effective.

- Setting 9888 in Pr xx.00 will set the read only flag
- Setting 9777 in Pr xx.00 will clear the read only flag.

Safety Product Mechanical Electrical Getting Basic Running the motor Optimisation Smartcard operation Onboard Advanced Technical	iagnostics UL Listing Information
--	--------------------------------------

9.3 Data block header information

Each data block stored on a SMARTCARD has header information detailing the following:

- A number which identifies the block (Pr 11.37)
- The type of data stored in the block (Pr 11.38)
- The drive mode if the data is parameter data (Pr 11.38)
- The version number (Pr 11.39)
- The checksum (Pr 11.40)
- The read-only flag
- The warning suppression flag (V01.07.00 and later)

The header information for each data block which has been used can be viewed in Pr **11.38** to Pr **11.40** by increasing or decreasing the data block number set in Pr **11.37**.

Software V01.07.00 and later

If Pr **11.37** is set to 1000 the checksum parameter (Pr **11.40**) shows the number of bytes left on the card in 16 byte pages.

If Pr **11.37** is set to 1001 the checksum parameter (Pr **11.40**) shows the total capacity of the card in 16 byte pages. Therefore, for a 4kB card this parameter would show 254.

If Pr **11.37** is set to 1002 the checksum parameter (Pr **11.40**) shows the state of the read-only (bit 0) and warning suppression flags (bit 1).

If there is no data on the card Pr **11.37** can only have values of 0 or 1,000 to 1,002.

Software V01.06.02 and earlier

If Pr **11.37** is set to 1000 the checksum parameter (Pr **11.40**) shows the number of bytes left on the card. If there is no data on the card Pr **11.37** can only have values of 0 or 1,000.

The version number is intended to be used when data blocks are used as drive macros. If a version number is to be stored with a data block, Pr **11.39** should be set to the required version number before the data is transferred. Each time Pr **11.37** is changed by the user the drive puts the version number of the currently viewed data block in Pr **11.39**.

If the destination drive has a different drive mode to the parameters on the card, the drive mode will be changed by the action of transferring parameters from the card to the drive.

The actions of erasing a card, erasing a file, changing a menu 0 parameter, or inserting a new card will effectively set Pr **11.37** to 0 or the lowest file number in the card.

9.4 SMARTCARD parameters

Table 9-3 Key to parameter table coding

RW	Read / Write	RO	Read only	Uni	Unipolar
Bi	Bi-polar	Bit	Bit parameter	Txt	Text string
FI	Filtered	DE	Destination	NC	Not cloned
RA	Rating dependent	PT	Protected	US	User save
PS	Power down save				

11.	11.36 {0.29} SMARTCARD parameter data previously loaded										
R	0	Uni						NC	PT	US	
€		0 to 999				⇔			0		

This parameter shows the number of the data block last transferred from a SMARTCARD to the drive.

	11.	37	SMAR	TCAR	D data	nur	nbe	r		
R١	N	Uni						NC		
€	0 to 1,002					⇒			0	

This parameter should have the data block number entered for which the user would like information displayed in Pr **11.38**, Pr **11.39** and Pr **11.40**.

	11.	38	SMAR	TCAR	D data	typ	e/m	ode		
R	С	Txt	xt					NC	PT	
ţ		0 to 18				₽				

Gives the type/mode of the data block selected with Pr 11.37:

Pr 11.38	String	Type/mode	Data stored
0	FrEE	Value when Pr 11.37 = 0, 1,000, 1,001 or 1,002	
1		Reserved	
2	3OpEn.LP	Open-loop mode parameters	
3	3CL.VECt	Closed-loop vector mode parameters	Data fram
4	3SErVO	Servo mode parameters	Data from EEPROM
5	3rEgEn	Regen mode parameters	
6 to 8	3Un	Unused	
9		Reserved	
10	40pEn.LP	Open-loop mode parameters	
11	4CL.VECt	Closed-loop vector mode parameters	Defaults last
12	4SErVO	Servo mode parameters	loaded and
13	4rEgEn	Regen mode parameters	differences
14 to 16	4Un	Unused	
17	LAddEr	Onboard PLC program	
18	Option	A Solutions Module file	

	11.	39	SMAR	TCAR	D data	vers	sior	۱		
R۱	N	Uni						NC		
€	0 to 9,999					Û			0	

Gives the version number of the data block selected in Pr 11.37.

	11.4	40	SMAR	TCARI	D data	che	cks	um		
R	R0 Uni							NC	PT	
Û	0 to 65,335					₽				

Gives the checksum of the data block selected in Pr 11.37.

11.	1.42 (0.30) Parameter cloning										
R١	N	Txt						NC		US*	
Û	0 to 4					₽			nonE	(0)	

NOTE

If Pr **11.42** is equal to 1 or 2, this value is not transferred to the drive or saved to the EEPROM. If Pr **11.42** is set to a 3 or 4 the value is transferred.

nonE (0) = Inactive

rEAd (1) = Read parameter set from the SMARTCARD

Prog (2) = Programming a parameter set to the SMARTCARD

Auto (3) = Auto save boot (4) = Boot mode

9.5 SMARTCARD trips

After an attempt to read, write or erase data to or from a SMARTCARD a trip may occur if there has been a problem with the command. The following trips indicate various problems as detailed in Table 9-4.

Table 9-4 Trip conditions

Trip		Diagnosis								
C.Acc	SMARTCARD trip: SMARTC	CARD Read / Write fail								
185	Check SMARTCARD is fitted Replace SMARTCARD	I / located correctly								
C.boot	SMARTCARD trip: The men not been created on the SM	nu 0 parameter modification cannot be saved to the SMARTCARD because the necessary file has MARTCARD								
177	SMARTCARD has not bee cr Ensure that Pr 11.42 is correct	A write to a menu 0 parameter has been initiated via the keypad with Pr 11.42 set to auto(3) or boot(4), but the necessary file on the SMARTCARD has not bee created Ensure that Pr 11.42 is correctly set and reset the drive to create the necessary file on the SMARTCARD Re-attempt the parameter write to the menu 0 parameter								
C.bUSY		Re-attempt the parameter write to the menu 0 parameter SMARTCARD trip: SMARTCARD can not perform the required function as it is being accessed by a Solutions Module								
178		e to finish accessing the SMARTCARD and then re-attempt the required function								
-										
C.Chg	SMARTCARD trip: Data loc Erase data in data location	ation already contains data								
179	Write data to an alternative d	ata location								
C.Cpr		ues stored in the drive and the values in the data block on the SMARTCARD are different								
188	•									
	Press the red reset butto									
C.dat		ation specified does not contain any data								
183	Ensure data block number is									
C.Err	SMARTCARD trip: SMARTC									
182	Ensure the card is located co Erase data and retry	rrectly								
102	Replace SMARTCARD									
C.Full	SMARTCARD trip: SMARTC	CARD full								
184	Delete a data block or use a									
C.Optn										
o.opin	SMARTCARD trip: Solutions Modules fitted are different between source drive and destination drive Ensure correct Solutions Modules are fitted									
180	Ensure Solutions Modules are in the same Solutions Module slot									
	Press the red 💿 reset butto	on								
C.rdo)	CARD has the Read only bit set								
		w SMARTCARD Read / Write access								
181	Ensure card is not writing to a	data locations 500 to 999								
C.rtg	SMARTCARD trip: SMARTC No drive rating parameters	CARD attempting to change the destination drive ratings have been transferred								
	Press the red reset butto Drive rating parameters are:	on								
	01	Function								
	Parameter 2.08	Standard ramp voltage								
	4.05/6/7, 21.27/8/9	Current limits								
	4.24	User current maximum scaling								
	5.07, 21.07	Motor rated current								
	5.09 , 21.09	Motor rated voltage								
186	5.10, 21.10	Rated power factor								
	5.17, 21.12	Stator resistance								
	5.18	Switching frequency								
	5.23, 21.13	Voltage offset								
	5.24, 21.14	Transient inductance								
	5.25, 21.24	Stator inductance								
	6.06 6.48	DC injection braking current Mains loss ride through detection level								
		-								
C Turp	The above parameters will be									
С.Тур	-	CARD parameter set not compatible with drive								
187	Press the red 💿 reset butto	on								

Safety	Product	Mechanical	Electrical	Getting	Basic	Running the	Ontimination	Smartcard	Onboard	Advanced	Technical	Diagnostica	UL Listing
Information	Information	Installation	Installation	Started	Parameters	motor	Optimisation	operation	PLC	Parameters	Data	Diagnostics	Information

Table 9-5 SMARTCARD status indications

Lower display	Description	Lower display	Description
boot	A parameter set is being transferred from the	cArd	The drive is writing a parameter set to the SMARTCARD
	SMARTCARD to the drive during power-up. For further information, please refer to section 9.2.4 Booting up from the SMARTCARD on every power up (Pr 11.42 = boot (4)).		during power-up. For further information, please refer to section 9.2.3 Auto saving parameter changes (Pr 11.42 = Auto (3)).

Safety	Product	Mechanical	Electrical	Getting	Basic	Running the	Optimisation	Smartcard	Onboard	Advanced	Technical	Diagnostics	UL Listing
Informat	on Information	Installation	Installation	Started	Parameters	motor	Optimisation	operation	PLC	Parameters	Data	Diagnostics	Information

10 Onboard PLC

10.1 Onboard PLC and SYPTLite

The Unidrive SP has the ability to store and execute a 4KB Onboard PLC ladder logic program without the need for additional hardware in the form of a Solutions Module.

The ladder logic program is written using SYPTLite, a Windows[™] based ladder diagram editor allowing the development of programs for execution in Unidrive SP or SM-Applications Lite.

SYPTLite is designed to be easy to use and to make program development as simple as possible. The features provided are a sub-set of those in the SYPT program editor. SYPTLite programs are developed using ladder logic, a graphical language widely used to program PLCs (IEC61131-3). SYPTLite allows the user to "draw" a ladder diagram representing a program.

SYPTLite provides a complete environment for the development of ladder diagrams. Ladder diagrams can be created, compiled into user programs and downloaded to a Unidrive SP or SM-Applications Lite for execution, via the RJ45 serial communications port on the front of the drive. The run-time operation of the compiled ladder diagram on the target can also be monitored using SYPTLite and facilities are provided to interact with the program on the target by setting new values for target parameters.

SYPTLite is available on the CD which is supplied with the drive.

10.2 Benefits

The combination of the Onboard PLC and SYPTLite, means that Unidrive SP can replace nano and some micro PLCs in many applications. The Onboard PLC programs can consist of up to a maximum of 50 ladder logic rungs (up to 7 function blocks and 10 contacts per rung). The Onboard PLC program can also be transferred to and from a SMARTCARD for backup or quick commissioning

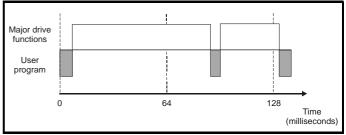
In addition to the basic ladder symbols, SYPTLite contains a sub-set of the function from the full version of SYPT. These include,

- Arithmetic blocks
- Comparison blocks
- Timers
- Counters
- Multiplexers
- Latches
- Bit manipulation

Typical applications for the Onboard PLC include,

- Ancillary pumps
- Fans and control valves
- Interlocking logic
- Sequences routines
- Custom control words.

10.3 Limitations

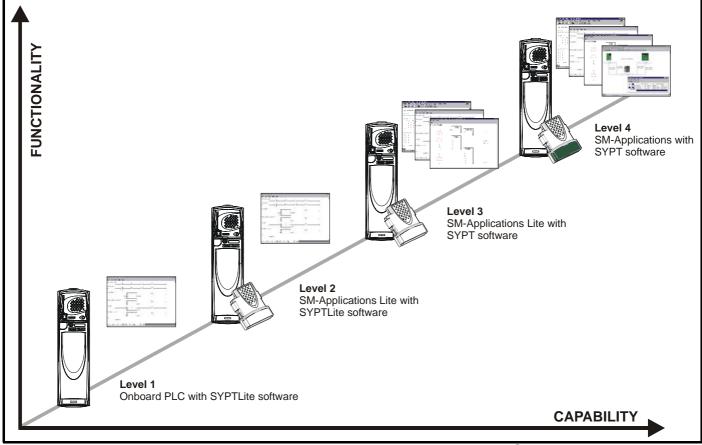

Compared with the SM-Applications or SM-Application Lite modules when programmed with SYPT, the Onboard PLC program has the following limitations:

- The maximum program size is 4032 bytes including header and optional source code.
- The Unidrive SP is rated for 100 program downloads. This limitation is imposed by the flash memory used to store the program within the drive.
- The user cannot create user variables. The user is only able to manipulate the drive parameter set.
- The program cannot be downloaded or monitored over CTNet. The program is only accessible via the drives RJ45 serial communications port.
- There are no real-time tasks, i.e. the scheduling rate of the program cannot be guaranteed. SM-Applications tasks such as Clock, Event, Pos0 or Speed are not available. The Onboard PLC should not be

Unidrive SP User Guide Issue Number: 11 used for time-critical applications. For time-critical applications either the SM-Applications or SM-Applications Lite solutions modules should be used.

 The program runs at a low priority. The Unidrive SP provides a single background task in which to run a ladder diagram. The drive is prioritised to perform its major functions first, e.g. motor control, and will use any remaining processing time to execute the ladder diagram as a background activity. As the drive's processor becomes more heavily loaded, less time is spent executing the program.

Figure 10-1 Unidrive SP Onboard PLC program scheduling


The user program is scheduled for a short period approximately once every 64ms. The time for which the program is scheduled will vary between 0.2ms and 2ms depending on the loading of the drive's processor.

When scheduled, several scans of the user program may be performed. Some scans may execute in microseconds. However, when the main drive functions are scheduled there will be a pause in the execution of the program causing some scans to take many milliseconds. SYPTLite displays the average execution time calculated over the last 10 scans of the user program.

Safety Product Mechanical Electrical Getting Basic Running the motor Optimisati Information Installation Installation Started Parameters Potimisati Optimisati	n Smartcard operation PLC Advanced Parameters Data Diagnostics UL Listing Information
---	---

The Onboard PLC and SYPTLite form the first level of functionality in a range of programmable options for Unidrive SP.

Figure 10-2 Programming options for Unidrive SP

SYPTLite can be used with either the Onboard PLC in the Unidrive SP or with SM-Applications Lite to create ladder logic programs.

SYPT can be used with either the SM-Applications Lite or SM-Applications to create fully flexible programs using ladder logic, function blocks or DPL script.

10.4 Getting started

SYPTLite can be found on the CD which is supplied with the drive.

SYPTLite system requirements

- Windows 98/98SE/Me/NT4/2000/XP. Windows 95 is not supported
- Pentium III 500MHz or better recommended
- 128MB RAM
- Minimum of 800x600 screen resolution. 1024x768 is recommended
- Adobe Acrobat 5.10 or later (for viewing User Guides)
- Microsoft Internet Explorer V5.0 or later
- RS232 to RS485, RJ45 communications lead to connect the PC to a Unidrive SP
- Administrator rights under Windows NT/2000/XP are required to install the software

To install SYPTLite, insert the CD and the auto-run facility should start up the front-end screen, from which SYPTLite can be selected.

See the SYPTLite help file for more information regarding using SYPTLite, creating ladder diagrams and the available function blocks.

10.5 Onboard PLC parameters

The following parameters are associated with the Onboard PLC program.

	11.	47	Drive	Onboa	rd PLC	; pr	ogr	am ena	ble		
R۱	N	Uni								US	
ţ	¢ 0 to 2				⇒			2			

This parameter is used to start and stop the drive Onboard PLC program.

Value	Description
0	Halt the drive Onboard PLC program.
1	Run the drive Onboard PLC program (if fitted). Any out-of- range parameter writes attempted will be clipped to the maximum / minimum values valid for that parameter before being written.
2	Run the drive Onboard PLC program (if fitted). Any out-of- range parameter writes attempted will cause a 'UP ovr' trip.

	11.48 Drive Onboard PLC							am sta	us	
R	0	Bi						NC	PT	
ţ	t -128 to +127					⇔				

The drive Onboard PLC program status parameter indicates to the user the actual state of the drive Onboard PLC program.

Optimisation	Onboard operation Onboard PLC Advanced Parameters Technical Data Diagnostics UL Listing Information
--------------	--

Value	Description
-n	Onboard PLC program caused a drive trip due to an error condition while running rung n. Note that the rung number is shown on the display as a negative number.
0	Onboard PLC program is not fitted.
1	Onboard PLC program is fitted but stopped.
2	Onboard PLC program is fitted and running.

When an Onboard PLC program is fitted and running, the lower display of the drive flashes 'PLC' once every 10s.

11.49 Drive Onboard PLC programming events								ts			
R	0	Uni						NC	PT		PS
ţ	0 to 65,535			Û							

The drive Onboard PLC programming events parameter holds the number of times an Onboard PLC program download has taken place and is 0 on dispatch from the factory. The Unidrive SP is rated for one hundred ladder program downloads. This parameter is not altered when defaults are loaded.

	11.	50	Drive	Onboa	rd PLC	; pr	ogra	am max	kimum	scan t	ime
R	С	Uni						NC	PT		
€	0 to 65,535 ms										

The Onboard PLC program maximum scan time parameter gives the longest scan time within the last ten scans of the drive Onboard PLC program. If the scan time is greater than the maximum value which can be represented by this parameter, the value will be clipped to the maximum value.

	11.	51	Drive	Onboa	rd PLC	pro	ogra	am firs	t run	
R	0	Bit						NC	PT	
€	C OFF (0) or On (1)									

The Drive Onboard PLC program first run parameter is set for the duration of program scan from the stopped state. This enables the user to perform any required initialisation every time the program is run. This parameter is set every time the program is stopped.

10.6 Onboard PLC trips

The following trips are associated with the Onboard PLC program.

Trip	Diagnosis
UP ACC	Onboard PLC program: Cannot access Onboard PLC program file on drive
98	Disable drive - write access is not allowed when the drive is enabled. Another source is already accessing Onboard PLC program - retry once the other action is complete.
UP div0	Onboard PLC program attempted divide by zero
90	Check program
UP OFL	Onboard PLC program variables and function block calls using more than the allowed RAM space (stack overflow)
95	Check program
UP ovr	Onboard PLC program attempted out of range parameter write
94	Check program
UP PAr	Onboard PLC program attempted access to a non- existent parameter
91	Check program
UP ro	Onboard PLC program attempted write to a read- only parameter
92	Check program
UP So	Onboard PLC program attempted read of a write- only parameter
93	Check program
UP udF	Onboard PLC program undefined trip
97	Check program
UP uSEr	Onboard PLC program requested a trip
96	Check program

10.7 Onboard PLC and the SMARTCARD

The Onboard PLC program in a drive may be transferred from the drive to a SMARTCARD and vice versa.

- To transfer an Onboard PLC program from the drive to a SMARTCARD, set Pr xx.00 to 5yyy and reset the drive
- To transfer an Onboard PLC program from the SMARTCARD to a drive, set Pr **xx.00** to 6yyy and reset the drive.

(Where yyy is the data block location, see Table 9-1 *SMARTCARD data blocks* on page 152 for restrictions on block numbers).

If an attempt is made to transfer an Onboard PLC program from a drive to the SMARTCARD when the drive contains no program, the block is still created on the SMARTCARD but it will contain no data. If this data block is then transferred to a drive, the destination drive will then have no Onboard PLC program.

The smallest SMARTCARD compatible with Unidrive SP has a capacity of 4064 bytes and each block can be up to 4064 bytes in size. The maximum size of a user program is 4032 bytes so it is guaranteed that any Onboard PLC program downloaded to a Unidrive SP will fit on to an empty SMARTCARD. A SMARTCARD can contain a number of Onboard PLC programs until the capacity of the card is used.

Safety	Product	Mechanical	Electrical	Getting	Basic	Running the	Optimisation	Smartcard	Onboard	Advanced	Technical	Diagnostics	UL Listing
Information	Information	Installation	Installation	Started	Parameters	motor	Optimisation	operation	PLC	Parameters	Data	Diagnostics	Information

11 Advanced parameters

This is a quick reference to all parameters in the drive showing units, ranges limits etc, with block diagrams to illustrate their function. Full descriptions of the parameters can be found in the *Unidrive SP Advanced User Guide* on the supplied CD ROM.

These advanced parameters are listed for reference purposes only. The lists in this chapter do not include sufficient information for adjusting these parameters. Incorrect adjustment can affect the safety of the system, and damage the drive and or external equipment. Before attempting to adjust any of these parameters, refer to the *Unidrive SP Advanced User Guide*.

Table 11-1 Menu descriptions

Menu number	Description
0	Commonly used basic set up parameters for quick / easy
	programming
1	Frequency / speed reference
2	Ramps
3	Frequency slaving, speed feedback and speed control
4	Torque and current control
5	Motor control
6	Sequencer and clock
7	Analogue I/O
8	Digital I/O
9	Programmable logic, motorised pot and binary sum
10	Status and trips
11	General drive set-up
12	Threshold detectors and variable selectors
13	Position control
14	User PID controller
15, 16, 17	Solutions Module slots
18	Application menu 1
19	Application menu 2
20	Application menu 3
21	Second motor parameters
22	Additional Menu 0 set-up

Operation mode abbreviations:

- OL> Open loop
- CL> Closed loop (which incorporates closed loop vector and servo mode)
- VT> Closed loop vector mode
- SV> Servo

Default abbreviations:

- EUR> European default value
- USA> USA default value

NOTE

Parameter numbers shown in brackets {...} are the equivalent Menu 0 parameters. Some Menu 0 parameters appear twice since their function depends on the operating mode.

The Range - CL column applies to both Closed-loop Vector and Closedloop Servo. For some parameters, this column applies only to one of these modes; this is indicated accordingly in the Default columns.

In some cases, the function or range of a parameter is affected by the setting of another parameter; the information in the lists relates to the default condition of such parameters.

Table 11-2 Key to parameter table coding

Coding	Attribute
RW	Read/write: can be written by the user
RO	Read only: can only be read by the user
Bit	1 bit parameter. 'On' or 'OFF' on the display
Bi	Bipolar parameter
Uni	Unipolar parameter
Txt	Text: the parameter uses text strings instead of numbers.
FI	Filtered: some parameters which can have rapidly changing values are filtered when displayed on the drive keypad for easy viewing.
DE	Destination: This parameter selects the destination of an input or logic function.
RA	Rating dependant: this parameter is likely to have different values and ranges with drives of different voltage and current ratings. This parameters is not transferred by SMARTCARDs when the rating of the destination drive is different from the source drive.
NC	Not cloned: not transferred to or from SMARTCARDs during cloning.
PT	Protected: cannot be used as a destination.
US	User save: parameter saved in drive EEPROM when the user initiates a parameter save.
PS	Power-down save: parameter automatically saved in drive EEPROM when the under volts (UV) trip occurs. With software version V01.08.00 and later, power-down save parameters are also saved in the drive when the user initiates a parameter save.

0 ()	D 1 1			0				• • •			T 1 1 1		
Safety	Product	Mechanical	Electrical	Getting	Basic	Running the	Ontimication	Smartcard	Onboard	Advanced	Technical	Diagnostics	UL Listing
Information	Information	Installation	Installation	Started	Parameters	motor	Optimisation	operation	PLC	Parameters	Data	Diagnostics	Information
				0.000.000.00					0		_ 0.10		

Table 11-3 Feature look-up table

Feature						Parame	eter num	ber (Pr)					
Acceleration rates	2.10	2.11 t	o 2.19	2.32	2.33	2.34	2.02						
Analog speed reference 1	1.36	7.1	7.01	7.07	7.08	7.09	7.25	7.26	7.30				
Analog speed reference 2	1.37	7.14	1.41	7.02	7.11	7.12	7.13	7.28	7.31				
Analog I/O	Menu 7												
Analog input 1	7.01	7.07	7.08	7.09	7.1	7.25	7.26	7.30					
Analog input 2	7.02	7.11	7.12	7.13	7.14	7.28	7.31						
Analog input 3	7.03	7.15	7.16	7.17	7.18	7.29	7.32						
Analog output 1	7.19	7.20	7.21	7.33									
Analog output 2	7.22	7.23	7.24										
Application menu	Men	u 18	Men	u 19	Men	u 20							
At speed indicator bit	3.06	3.07	3.09	10.06	10.05	10.07							
Auto reset	10.34	10.35	10.36	10.01									
Autotune	5.12	5.16	5.17	5.23	5.24	5.25	5.10	5.29	5.30				
Binary sum	9.29	9.30	9.31	9.32	9.33	9.34							
Bipolar speed	1.10												
Brake control	12.40 to	o 12.49											
Braking	10.11	10.10	10.30	10.31	6.01	2.04	2.02	10.12	10.39	10.40			
Catch a spinning motor	6.09			<u> </u>					<u> </u>	<u> </u>	<u> </u>	<u> </u>	
Cloning	11.42	11.36 t	o 11.40										
Coast to stop	6.01												
Comms	11.23 to	o 11.26											
Cost - per kWh electricity	6.16	6.17	6.24	6.25	6.26	6.40							
Current controller	4.13	4.14											
Current feedback	4.01	4.02	4.17	4.04	4.12	4.20	4.23	4.24	4.26	10.08	10.09	10.17	
Current limits	4.05	4.06	4.07	4.18	4.15	4.19	4.16	5.07	5.10	10.08	10.09	10.17	
DC bus voltage	5.05	2.08	0.04										
DC injection braking Deceleration rates	6.06 2.20	6.07	6.01 o 2.29	2.04	2.35 t	0.2.27	2.02	2.04	2.08	6.01	10.30	10.31	10.39
Defaults	11.43	11.46	0 2.29	2.04	2.551	0 2.37	2.02	2.04	2.00	0.01	10.30	10.31	10.39
Digital I/O	Menu 8			-					-	-	-	-	
Digital I/O read word	8.20			-					-	-	-	-	
Digital I/O T24	8.01	8.11	8.21	8.31					-	-	-	-	
Digital I/O T25	8.02	8.12	8.22	8.32									
Digital I/O T26	8.03	8.13	8.23	8.33					-	-	-	-	
Digital input T27	8.04	8.14	8.24										
Digital input T28	8.05	8.15	8.25	8.39									
Digital input T29	8.06	8.16	8.26	8.39									
Digital lock	13.10		o 13.09	13.11	13.12	13.16	3.22	3.23	13.19 t	o 13.23			
Digital output T22	8.08	8.18	8.28					5.20					
Direction	10.13	6.30	6.31	1.03	10.14	2.01	3.02	8.03	8.04	10.40			
Display timeout	11.41	2.00	5.01				5.02	5.00	2.01				
Drive active	10.02	10.40											
Drive derivative	11.28												
Drive healthy	10.01	8.27	8.07	8.17	10.36	10.40							
Dynamic performance	5.26	5.21	5.07	5.17	10.00	10.40							
Dynamic V/F	5.20												
Electronic nameplate	3.49												
Enable	6.15	8.09	8.10										
Encoder less CLV mode	3.24	0.03	0.10										
	5.24												

	Electrical	Getting Started	Basic Parameters	Running moto		nisation	Smartcard operation	Onboard PLC	Advance Paramete	nnical ata	Diagnostics	UL Listing
Feature						Paran	neter num	ber (Pr)				
Encoder reference	3.43	3.44	3.45	3.46				, ,		1		
Encoder set up	3.33	3.34 t	o 3.42	3.47	3.48							
External trip	10.32	8.10	8.07									
Fan speed	6.45											
Field weakening - induction motor	5.29	5.30	1.06	5.28								
Field weakening - servo	5.22	1.06										
Filter change	6.19	6.18										
Frequency reference selection	1.14	1.15										
Frequency slaving	3.01	3.13	3.14	3.15	3.16	3.17	3.18					
Hard speed reference	3.22	3.23										
Heavy duty rating	5.07	11.32										
High stability space vector	5.19											
modulation		6.20	6.21	6.22	6 22	6.24	6.42	6.42	6.41			
I/O sequencer	6.04	6.30 5.12	6.31 4.22	6.32 3.18	6.33	6.34	6.42	6.43	6.41			
Inertia compensation	2.38			J. 10								
Jog reference Ke	1.05 5.33	2.19	2.29									
			4.40	4.54	0.40	0.40						
Keypad reference Kt	1.17	1.14	1.43	1.51	6.12	6.13						
	5.32	0.00										
Limit switches	6.35	6.36										
Local position reference		0 13.23	0.05	0.00	0.07	0.00	0.00	0.40		-		
Logic function 1	9.01	9.04	9.05	9.06	9.07	9.08	9.09	9.10				
Logic function 2	9.02	9.14	9.15	9.16	9.17	9.18	9.19	9.20				
Low voltage supply	6.44	6.46	40.40									
Mains loss	6.03	10.15	10.16	5.05								
Marker pulse	3.32	3.31										
Maximum speed	1.06											
Menu 0 set up		o 11.22	Menu	122								
Minimum speed	1.07	10.04										
Modules - number of	11.35											
Motor map	5.06	5.07	5.08	5.09	5.10	5.11						
Motor map 2		u 21	11.45									
Motorised potentiometer	9.21	9.22	9.23	9.24	9.25	9.26	9.27	9.28				
Offset speed reference	1.04	1.38	1.09									
Onboard PLC		o 11.51										
Open collector digital outputs	8.30											
Open loop vector mode	5.14	5.17	5.23									
Operating mode	0.48	3.24	5.14				_					
Operating mode	11.31						_					
Orientation	13.10		o 13.15									
Output	5.01	5.02	5.03	5.04								
Overspeed threshold	3.08						_					
Phase angle	3.25	5.12										
PID controller		u 14										
Position feedback - drive	3.28	3.29	3.30	3.50								
Positive logic	8.29											
Power up parameter	11.22	11.21										
Precision reference	1.18	1.19	1.20	1.44								
Preset speeds	1.15	1.21 t	o 1.28	1.16	1.14	1.42	1.45 to	o 1.48	1.50			
Programmable logic	Menu 9											

Safety Information	Product Information	Mechanical Installation	Electrical Installation	Getting Started	Basic Parameter	Running s moto		misation	Smartcard operation	Onboard PLC	Advane Parame		nnical ata	Diagnostic	UL Listing Information
	Feature							Param	neter num	ber (Pr)					
Quasi squa	are operati	on	5.20												
Ramp (acc	el / decel)	mode	2.04	2.08	6.01	2.02	2.03	10.30	10.31	10.39		-			
Rated spe	ed autotun	е	5.16	5.08											
Regenerat	ing		10.1	0 10.11	10.30	10.31	6.01	2.04	2.02	10.12	10.39	10.40			
Relative jo	g		13.1	7 to 13.19								-			
Relay outp	out		8.07	8.17	8.27										
Reset			10.3	3 8.02	8.22	10.34	10.35	10.36	10.01						
S ramp			2.06	2.07											
Sample rat	tes		5.18												
Secure dis	Secure disable input			8.10											
Security co	Security code			11.44											
Serial comms			11.2	3 to 11.26											
Skip speed	Skip speeds			1.30	1.31	1.32	1.33	1.34	1.35				1		
Slip compe	Slip compensation			5.08											
Smartcard	Smartcard			6 to 11.40	11.42			İ					1		
Software v	Software version			9 11.34											
Speed con	Speed controller) to 3.17	3.19	3.20	3.21								
Speed feed	Speed feedback			3.03	3.04										
Speed feed	Speed feedback - drive			3.27	3.28	3.29	3.30	3.31	3.42						
Speed refe	erence sele	ection	1.14	1.15	1.49	1.50	1.01								
Status wor	d		10.4)											
Supply			6.44	5.05	6.46										
Switching	frequency		5.18	5.35	7.34	7.35									
Thermal p	rotection -	drive	5.18	5.35	7.04	7.05	7.06	7.32	7.35	10.18					
Thermal p	rotection -	motor	4.15	5.07	4.19	4.16	4.25	7.15							
Thermistor	· input		7.15	7.03											
Threshold	detector 1		12.0	1 12.03	to 12.07										
Threshold	detector 2		12.0	2 12.23	to 12.27										
Time - filte	r change		6.19	6.18											
Time - pow	vered up lo	g	6.20	6.21	6.28										
Time - run	log		6.22	6.23	6.28										
Torque			4.03	4.26	5.32										
Torque mo	de		4.08	4.11	4.09	4.10									
Trip detect	ion		10.3	7 10.38	10.20 to	0 10.29									
Trip log			10.2) to 10.29	6.28										
Trip log			10.2) to 10.29	10.41 to	0 10.51	6.28								
Under volta	age		5.05	10.16	10.15										
V/F mode			5.15	5.14											
Variable se	Variable selector 1		12.0	3 to 12.15											
	Variable selector 2			3 to 12.35											
-	/elocity feed forward		1.39												
-	oltage controller		5.31												
-	/oltage mode		5.14		5.23	5.15									
Voltage rat	-		11.3		5.05										
Voltage su	pply		6.44		5.05										
Warning			10.1	9 10.12	10.17	10.18	10.40								
Zero speed	d indicator	bit	3.05	10.03											

Safety Information	Product Information	Mechanical Installation	Electrical Installation	Getting Started	Basic Parameters	Running the motor	Optimisation	Smartcard operation	Onboard PLC	Advanced Parameters	Technical Data	Diagnostics	UL Listing Information
-----------------------	------------------------	----------------------------	----------------------------	--------------------	---------------------	----------------------	--------------	---------------------	----------------	------------------------	-------------------	-------------	---------------------------

Parameter ranges and variable maximums:

The two values provided define the minimum and maximum values for the given parameter. In some cases the parameter range is variable and dependant on either:

- other parameters
- the drive rating
- drive mode
- or a combination of these

The values given in Table 11-4 are the variable maximums used in the drive.

Table 11-4	Definition of parameter ranges & variable maximums	
------------	--	--

Maximum	Definition
SPEED_FREQ_MAX [Open-loop 3000.0Hz, Closed-loop vector and Servo 40000.0rpm]	Maximum speed (closed-loop mode) reference or frequency (open-loop mode) reference If Pr 1.08 = 0: SPEED_FREQ_MAX = Pr 1.06 If Pr 1.08 = 1: SPEED_FREQ_MAX is Pr 1.06 or – Pr 1.07 whichever is the largest (If the second motor map is selected Pr 21.01 is used instead of Pr 1.06 and Pr 21.02 instead of Pr 1.07)
SPEED_LIMIT_MAX [40000.0rpm]	Maximum applied to speed reference limits A maximum limit may be applied to the speed reference to prevent the nominal encoder frequency from exceeding 500kHz (410kHz for software version V01.06.00 and earlier). The maximum is defined by SPEED_LIMIT_MAX (in rpm) = 500kHz x 60 / ELPR = 3.0 x 10 ⁷ / ELPR subject to an absolute maximum of 40,000 rpm. ELPR is equivalent encoder lines per revolution and is the number of lines that would be produced by a quadrature encoder. Quadrature encoder ELPR = number of lines per revolution F and D encoder ELPR = number of lines per revolution / 2 Resolver ELPR = resolution / 4 SINCOS encoder ELPR = number of sine waves per revolution Serial comms encoder ELPR = resolution / 4 This maximum is defined by the device selected with the speed feedback selector (Pr 3.26) and the ELPR set for the position feedback device.
SPEED_MAX [40000.0rpm]	Maximum speed This maximum is used for some speed related parameters in menu 3. To allow headroom for overshoot etc. the maximum speed is twice the maximum speed reference. SPEED_MAX = 2 x SPEED_FREQ_MAX
RATED_CURRENT_MAX [9999.99A]	Maximum motor rated currentRATED_CURRENT_MAX = 1.36 x K_C.The motor rated current can be increased above K_C up to a level not exceeding 1.36 x K_C). (Maximum motorrated current is the maximum normal duty current rating.)The actual level varies from one drive size to another, refer to Table 11-5.
DRIVE_CURRENT_MAX [9999.99A]	Maximum drive current The maximum drive current is the current at the over current trip level and is given by: DRIVE_CURRENT_MAX = K _C / 0.45

	trical Getting Basic Running the motor Optimisation Smartcard Onboard PLC Parameters Data Diagnostics UL Listing Information
Maximum	Definition
	Maximum current limit settings for motor map 1 This maximum current limit setting is the maximum applied to the current limit parameters in motor map 1. Open Loop Maximum current limit = $\sqrt{\left[\left(\frac{Maximum current}{Motor rated current}\right)^2 + PF^2 - 1\right]_x 100\%}$
MOTOR1_CURRENT_LIMIT_MAX [1000.0%]	$\frac{PF}{Where:}$ The Maximum current is either (1.5 x K _C) when the motor rated current set in Pr 5.07 is less than or equal to the maximum Heavy Duty current rating given by Pr 11.32 , otherwise it is (1.1 x Normal Duty rating). Motor rated current is given by Pr 5.07 PF is motor rated power factor given by Pr 5.10 Closed Loop Vector Maximum $= \sqrt{\left[\left[\frac{Maximum current}{Motor rated current}\right]^2 + \cos(\varphi_1)^2 - 1\right]_{x \ 100\%}}$
[1000.0%]	Where: The Maximum current is either (1.75 x K _C) when the motor rated current set in Pr 5.07 is less than or equal to the maximum Heavy Duty current rating given by Pr 11.32 , otherwise it is (1.1 x Normal Duty rating). Motor rated current is given by Pr 5.07 $\varphi_1 = \cos - 1(PF) - \varphi_2$. This is measured by the drive during an autotune. See Menu 4 in the <i>Unidrive SP</i> <i>Advanced User Guide</i> for more information regarding φ_2 . PF is motor rated power factor given by Pr 5.10 Servo Maximum current limit = $\left[\frac{Maximum current}{Motor rated current}\right] \times 100\%$
	Where: The Maximum current is either $(1.75 \times K_C)$ when the motor rated current set in Pr 5.07 is less than or equal to the maximum Heavy Duty current rating given by Pr 11.32 , otherwise it is $(1.1 \times Normal Duty rating)$. Motor rated current is given by Pr 5.07
MOTOR2_CURRENT_LIMIT_MAX [1000.0%]	Maximum current limit settings for motor map 2 This maximum current limit setting is the maximum applied to the current limit parameters in motor map 2. The formulae for MOTOR2_CURRENT_LIMIT_MAX are the same for MOTOR1_CURRENT_LIMIT_MAX except that Pr 5.07 is replaced with Pr 21.07 and Pr 5.10 is replaced with Pr 21.10.
TORQUE_PROD_CURRENT_MAX [1000.0%]	Maximum torque producing current This is used as a maximum for torque and torque producing current parameters. It is MOTOR1_CURRENT_LIMIT_MAX or MOTOR2_CURRENT_LIMIT_MAX depending on which motor map is currently active.
USER_CURRENT_MAX [1000.0%]	Current parameter limit selected by the user The user can select a maximum for Pr 4.08 (torque reference) and Pr 4.20 (percentage load) to give suitable scaling for analogue I/O with Pr 4.24 . This maximum is subject to a limit of MOTOR1_CURRENT_LIMIT_MAX. or MOTOR2_CURRENT_LIMIT_MAX depending on which motor map is currently active. USER_CURRENT_MAX = Pr 4.24
AC_VOLTAGE_SET_MAX [690V]	Maximum output voltage set-point Defines the maximum motor voltage that can be selected. 200V drives: 240V, 400V drives: 480V 575V drives: 575V, 690V drives: 690V
AC_VOLTAGE_MAX [930V]	Maximum AC output voltage This maximum has been chosen to allow for maximum AC voltage that can be produced by the drive including quasi-square wave operation as follows: AC_VOLTAGE_MAX = 0.78 x DC_VOLTAGE_MAX 200V drives: 325V, 400V drives: 650V, 575V drives: 780V, 690V drives: 930V
DC_VOLTAGE_SET_MAX [1150V]	Maximum DC voltage set-point 200V rating drive: 0 to 400V, 400V rating drive: 0 to 800V 575V rating drive: 0 to 955V, 690V rating drive: 0 to 1150V
DC_VOLTAGE_MAX [1190V]	Maximum DC bus voltage The maximum measurable DC bus voltage. 200V drives: 415V, 400V drives: 830V, 575V drives: 990V, 690V drives: 1190V

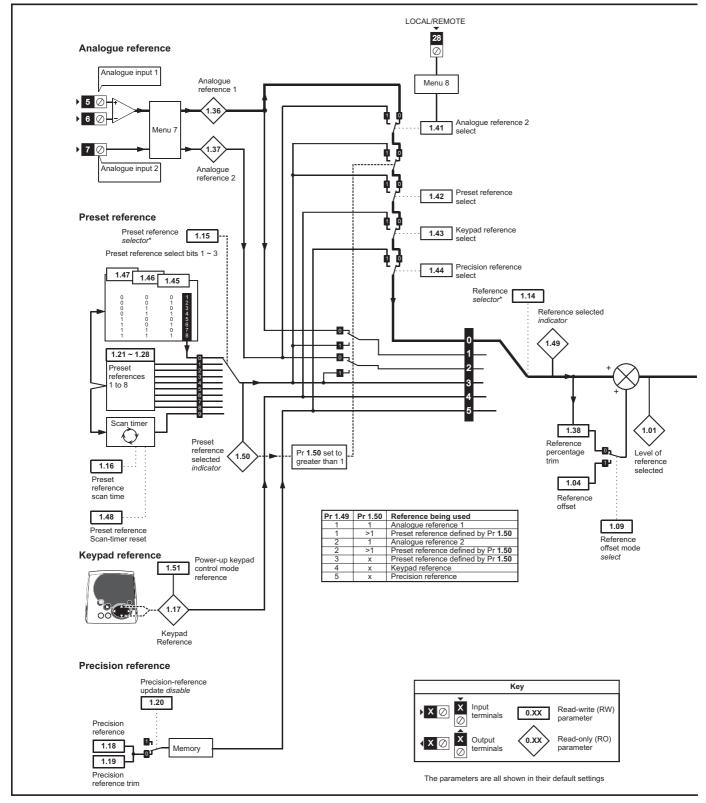
											UL Listing Information		
Maximum Definition													
POWER_ [9999.99k			The maxi	maximum mum AC Software \	output volt /01.07.01	s been cho age, maxin and earlier:	sen to allow num controll : POWER_I POWER_M	ed current MAX = $\sqrt{3}$	and unity	power facto TAGE_MA	or. Therefo	ore: D_CURRE	NT x 1.75

The values given in square brackets indicate the absolute maximum value allowed for the variable maximum.

Table 11-5 Maximum motor rated current for drives

Model	K _C	Maximum Heavy Duty current rating (Pr 11.32)	Maximum Normal Duty current rating
		A	Α
SP1201	4.3	4.3	5.2
SP1202	5.8	5.8	6.8
SP1203	7.5	7.5	9.6
SP1204	10.6	10.6	11
SP2201	12.6	12.6	15.5
SP2202	17.0	17.0	22.0
SP2203	25.0	25.0	28.0
SP3201	31.0	31.0	42.0
SP3202	42.0	42.0	54.0
SP4201	56.0	56.0	68.0
SP4202	68.0	68.0	80.0
SP4203	80.0	80.0	104.0
SP1401	2.1	2.1	2.8
SP1402	3.0	3.0	3.8
SP1403	4.2	4.2	5.0
SP1404	5.8	5.8	6.9
SP1405	7.6	7.6	8.8
SP1406	9.5	9.5	11.0
SP2401	13.0	13.0	15.3
SP2402	16.5	16.5	21.0
SP2403	23.0	25.0	29.0
SP2404	29.0	29.0	29.0
SP3401	32.0	32.0	35.0
SP3402	40.0	40.0	43.0
SP3403	46.0	46.0	56.0
SP4401	60.0	60.0	68.0
SP4402	74.0	74.0	83.0
SP4403	96.0	96.0	104.0
SP5401	124.0	124.0	138.0
SP5402	156.0	156.0	168.0
SP6401	154.2	180.0	202.0
SP6402	180.0	210.0	236.0
SP3501	4.1	4.1	5.4
SP3502	5.4	5.4	6.1
SP3503	6.1	6.1	8.4
SP3504	9.5	9.5	11.0
SP3505	12.0	12.0	16.0
SP3506	18.0	18.0	22.0
SP3507	22.0	22.0	27.0
SP4601	19.0	19.0	22.0
SP4602	22.0	22.0	27.0
SP4603	27.0	27.0	36.0
SP4604	36.0	36.0	43.0
SP4605	43.0	43.0	52.0
SP4606	52.0	52.0	62.0
SP5601	63.0	63.0	84.0
SP5602	85.0	85.0	99.0
SP6601	85.7	100.0	125.0
SP6602	107.1	125.0	144.0

Safety	Product	Mechanical	Electrical	Getting	Basic	Running the	Optimisation	Smartcard	Onboard	Advanced	Technical	Diagnostics	UL Listing
Information	Information	Installation	Installation	Started	Parameters	motor	optimodilon	operation	PLC	Parameters	Data	Diagnootioo	Information


Table 11-6 Maximum motor rated current for free standing cubicle drives

Model	К _С	Maximum Heavy Duty current rating (Pr 11.32) A	Maximum Normal Duty current rating A
SP8411	293	333	389
SP8412	342	389	437
SP8413	391	440	545
SP8414	472	545	620
SP9411	586	620	690
SP9412	586	690	770
SP9413	684	770	864
SP9414	782	864	990
SP9415	944	990	1164

Safety Information	Product Information	Mechanical Installation	Electrical Installation	Getting Started	Basic Parameters	Running the motor	Optimisation	Smartcard operation	Onboard PLC	Advanced Parameters	Technical Data	Diagnostics	UL Listing Information
-----------------------	------------------------	----------------------------	----------------------------	--------------------	---------------------	----------------------	--------------	---------------------	----------------	------------------------	-------------------	-------------	---------------------------

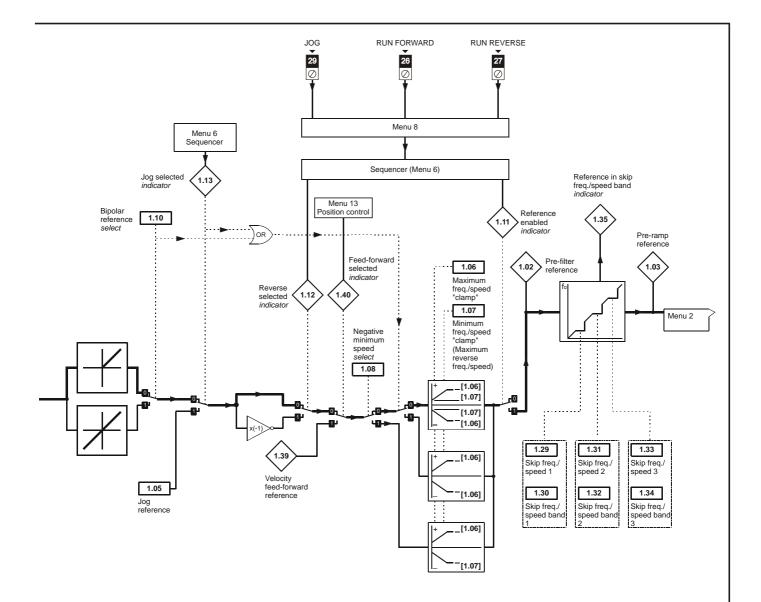

11.1 Menu 1: Frequency / speed reference

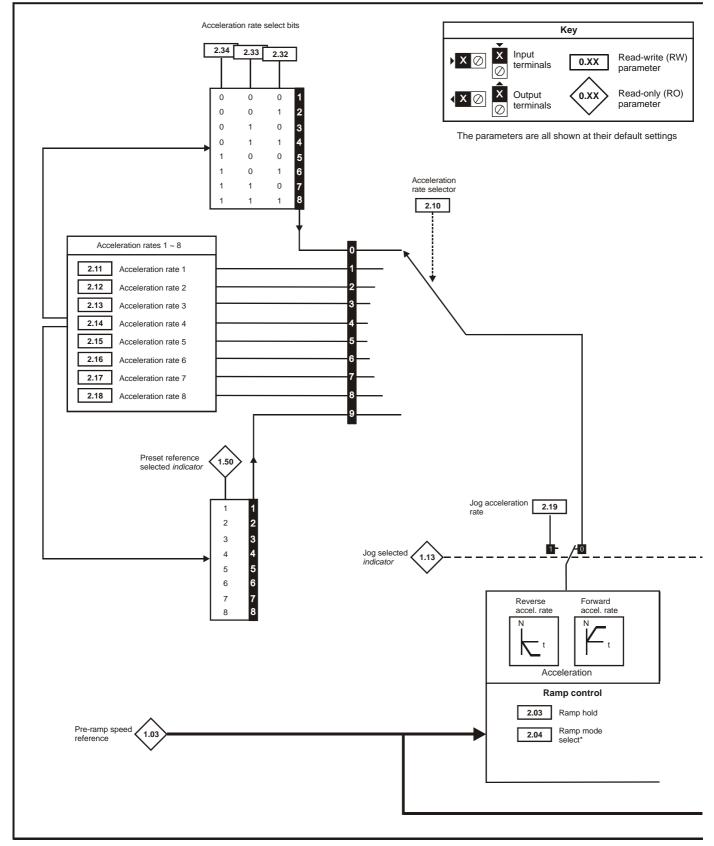
Figure 11-1 Menu 1 logic diagram

*For more information, refer to section 11.21.1 Reference modes on page 248.

Diagnostics				Deverseters	5	Optimisation		DI C			Diagnostics	UL Listing Information
-------------	--	--	--	-------------	---	--------------	--	------	--	--	-------------	---------------------------

Safety Information Product Information Mechanical Installation Electrical Installation Getting Started Basic Parameters Running the motor Optimis	sation Smartcard operation PLC Advanced Technical Diagnostics UL Listing Information
--	--

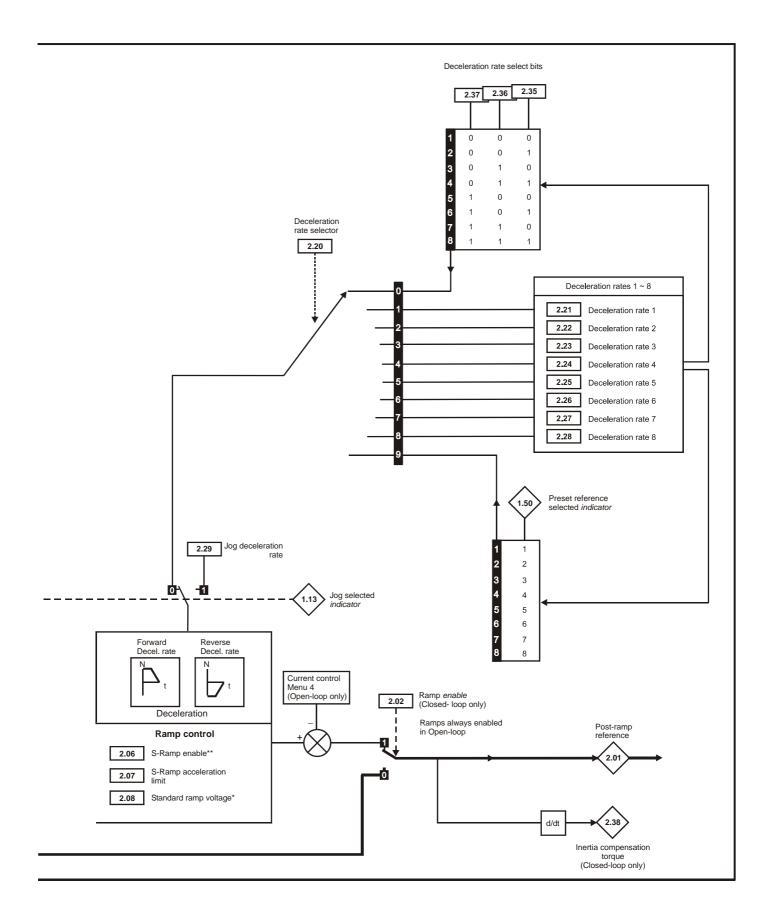
	Denometer		Ran	ge(‡)		Default(⇔)				T			
	Parameter		OL	CL	OL	VT	SV			Ту	pe		
1.01	Frequency / speed reference selected		±SPEED_FRE	EQ_MAX Hz/rpm				RO	Bi		NC	PT	
1.02	Pre-skip filter reference		±SPEED_FRE	EQ_MAX Hz/rpm				RO	Bi		NC	PT	
1.03	Pre-ramp reference		±SPEED_FRE	EQ_MAX Hz/rpm				RO	Bi		NC	PT	
1.04	Reference offset		±3,000.0Hz	±40,000.0 rpm		0.0		RW	Bi				US
1.05	Jog reference	{0.23 }	0 to 400.0 Hz	0 to 4,000.0 rpm		0.0		RW	Uni				US
1.06	Maximum reference clamp	{0.02 }	0 to 3,000.0 Hz	SPEED_LIMIT_MAX rpm		EUR> 1,500. USA> 1,800.		RW	Uni				US
1.07	Minimum reference clamp	{0.01 }	±3,000.0 Hz	±SPEED_LIMIT_MAX rpm		0.0		RW	Bi			PT	US
1.08	Negative minimum reference clamp enable		OFF (0)) or On (1)		OFF (0)		RW	Bit				US
1.09	Reference offset select		OFF (0)) or On (1)		OFF (0)		RW	Bit				US
1.10	Bipolar reference enable	{0.22 }	OFF (0)) or On (1)		OFF (0)		RW	Bit				US
1.11	Reference enabled indicator		OFF (0)) or On (1)				RO	Bit		NC	PT	
1.12	Reverse selected indicator		OFF (0)) or On (1)				RO	Bit		NC	PT	
1.13	Jog selected indicator		OFF (0)) or On (1)				RO	Bit		NC	PT	
1.14	Reference selector	{0.05 }		A2.Pr (2), Pr (3), PAd (4), rc (5)		A1.A2 (0)		RW	Txt				US
1.15	Preset reference selector		0	to 9		0		RW	Uni				US
1.16	Preset reference selector timer		0 to 400.0s 10.0					RW	Uni				US
1.17	Keypad control mode reference		±SPEED_FRE	EQ_MAX Hz/rpm		0.0		RO	Bi		NC	PT	PS
1.18	Precision reference coarse		±SPEED_FRE	EQ_MAX Hz/rpm		0.0		RW	Bi				US
1.19	Precision reference fine		0.000 to 0.099 Hz	0.000 to 0.099 rpm		0.000		RW	Uni				US
1.20	Precision reference update disable		OFF (0)) or On (1)		OFF (0)		RW	Bit		NC		
1.21	Preset reference 1	{0.24 }	±SPEED_FRE	EQ_MAX Hz/rpm		0.0		RW	Bi				US
1.22	Preset reference 2	{0.25 }	±SPEED_FRE	EQ_MAX Hz/rpm		0.0		RW	Bi				US
1.23	Preset reference 3	{0.26 }	±SPEED_FRE	EQ_MAX Hz/rpm		0.0		RW	Bi				US
1.24	Preset reference 4	{0.27 }	_	EQ_MAX Hz/rpm		0.0		RW	Bi				US
1.25	Preset reference 5			EQ_MAX Hz/rpm		0.0		RW	Bi				US
1.26	Preset reference 6			EQ_MAX Hz/rpm		0.0		RW	Bi				US
1.27	Preset reference 7		_	EQ_MAX Hz/rpm		0.0		RW	Bi				US
1.28	Preset reference 8			EQ_MAX Hz/rpm		0.0		RW	Bi				US
1.29	Skip reference 1		0.0 to 3,000.0 Hz	0 to 40,000 rpm	0.0		0	RW	Uni				US
1.30	Skip reference band 1		0.0 to 25.0 Hz	0 to 250 rpm	0.5		5	RW	Uni				US
1.31	Skip reference 2		0.0 to 3,000.0 Hz	0 to 40,000 rpm	0.0		0	RW	Uni				US
1.32	Skip reference band 2		0.0 to 25.0 Hz	0 to 250 rpm	0.5		5	RW	Uni				US
1.33	Skip reference 3		0.0 to 3,000.0 Hz	0 to 40,000 rpm	0.0		0	RW	Uni				US
1.34	Skip reference band 3		0.0 to 25.0Hz	0 to 250 rpm	0.5		5	RW	Uni			DT	US
1.35	Reference in rejection zone		,) or On (1)				RO	Bit		NC	Ы	\vdash
1.36	Analogue reference 1			EQ_MAX Hz/rpm					Bi		NC		
1.37	Analogue reference 2 Percentage trim		_	EQ_MAX Hz/rpm 0.00%		0.00		RO RW			NC NC		
1.38 1.39	Velocity feed-forward		±10 ±3,000.0 Hz	±40,000.0 rpm		0.00		RW	Bi		NC	БΤ	<u> </u>
1.39	-			±40,000.0 rpm) or On (1)				RO			NC		
1.40 1.41	Velocity feed-forward select Analogue reference 2 select) or On (1)) or On (1)		OFF (0)		RW	Bit Bit		NC	۲1	
1.41	Preset reference select) or On (1)		OFF (0) OFF (0)		RW	Bit		NC		<u> </u>
1.42	Keypad reference select		()) or On (1)		OFF (0) OFF (0)		RW	Bit		NC		<u> </u>
1.43	Precision reference select) or On (1)		OFF (0)		RW	Bit		NC		
1.44	Preset reference 1 select) or On (1)		OFF (0)		RW	Bit		NC		
1.45	Preset reference 2 select) or On (1)		OFF (0)		RW	Bit		NC		
1.40	Preset reference 3 select) or On (1)		OFF (0)		RW	Bit		NC		<u> </u>
1.48	Reference timer reset flag) or On (1)		OFF (0)		RW	Bit	\vdash	NC		┝──
1.49	Reference selected indicator			to 5				RO	Uni		NC	PT	<u> </u>
1.49	Preset reference selected indicator			to 8					Uni		NC		-
1.51	Power-up keyboard control mode reference		rESEt (0), LA	St (1), PrS1 (2)		rESEt (0)		RW	Txt				US


RW	Read / Write	RO	Read only	Uni	Unipolar	Bi	Bi-polar	Bit	Bit parameter	Txt	Text string		
FI	Filtered	DE	Destination	NC	Not cloned	RA	Rating dependent	PT	Protected	US	User save	PS	Power down save

								-					
Safety	Product	Mechanical	Electrical	Getting	Basic	Running the	Ontimisation	Smartcard	Onboard	Advanced	Technical	Diagnostica	UL Listing
Information	Information	Installation	Installation	Started	Parameters	motor	Optimisation	operation	PLC	Parameters	Data	Diagnostics	Information

Safety Information	Product Information	Mechanical Installation	Electrical Installation	Getting Started	Basic Parameters	Running the motor	Optimisation	Smartcard operation	Onboard PLC	Advanced Parameters		Diagnostics	UL Listing Information
-----------------------	------------------------	----------------------------	----------------------------	--------------------	---------------------	----------------------	--------------	---------------------	----------------	------------------------	--	-------------	---------------------------

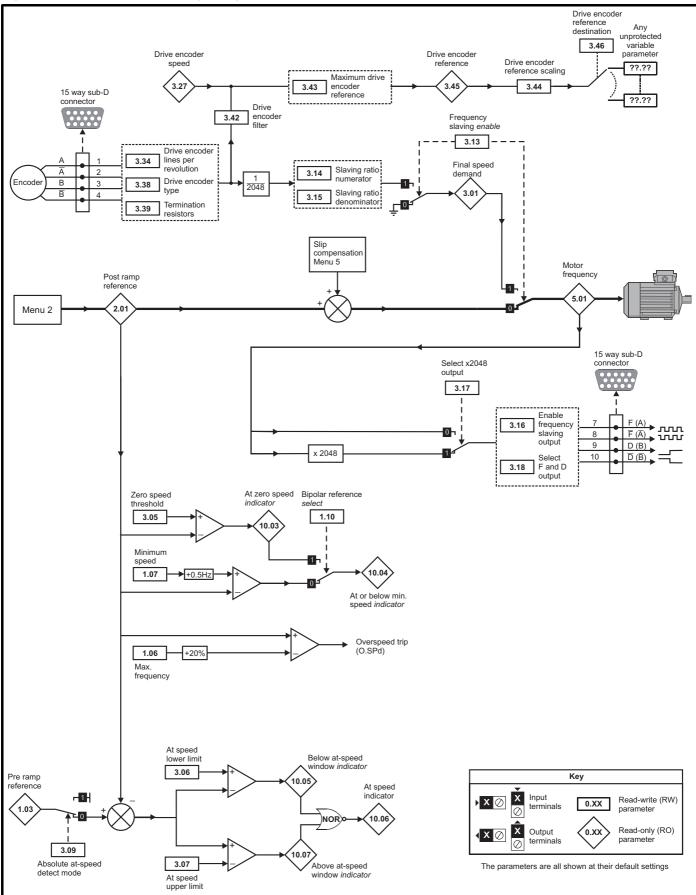
11.2 Menu 2: Ramps


Figure 11-2 Menu 2 logic diagram

*For more information, refer to section 11.21.2 *Braking Modes* on page 249.

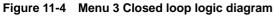
**For more information, refer to section 11.21.3 S ramps on page 249.

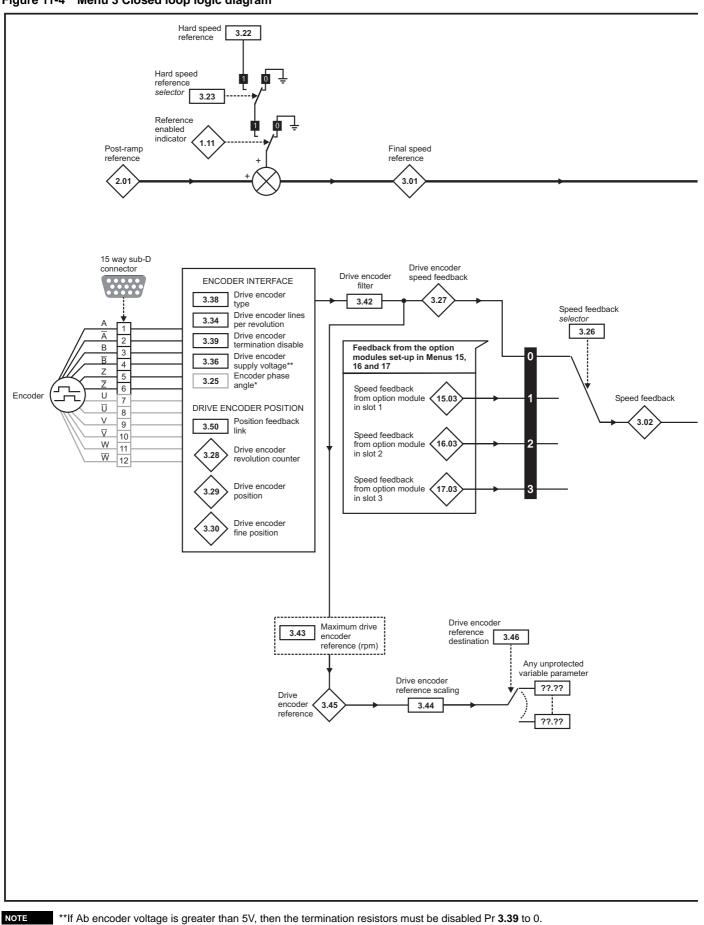
Safety	Product	Mechanical	Electrical	Getting	Basic	Running the	Optimisation	Smartcard	Onboard	Advanced	Technical	Diagnostics	UL Listing
Information	Information	Installation	Installation	Started	Parameters	motor	Optimisation	operation	PLC	Parameters	Data	Diagnostics	Information

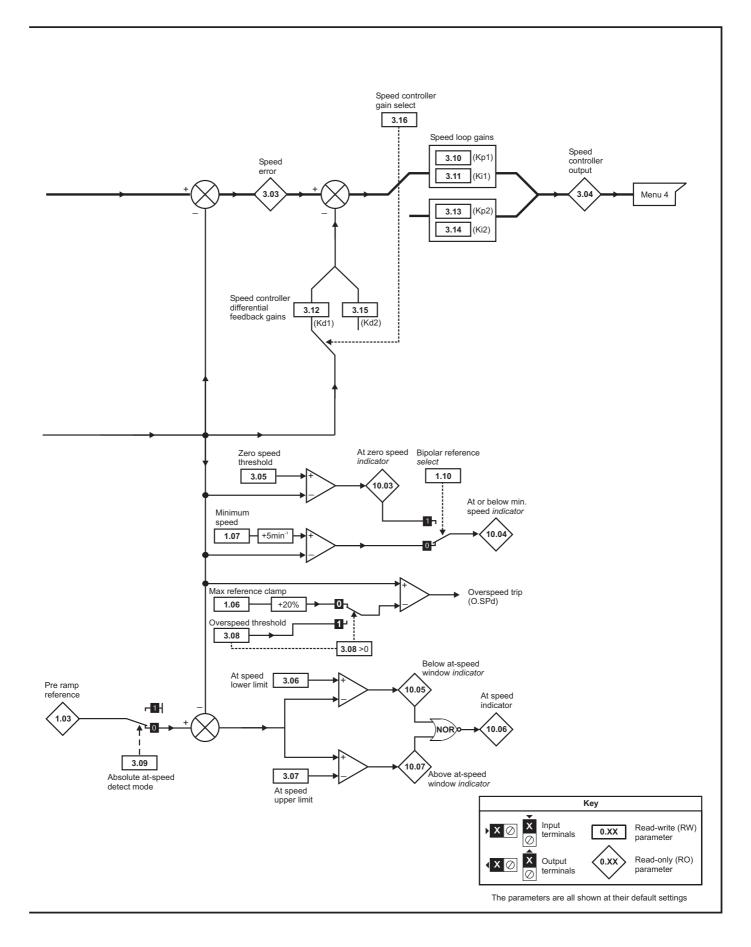

Safety Information	Product Information	Mechanical Installation	Electrical Installation	Getting Started	Basic Parameters	Running the motor	Optimisation	Smartcard operation	Onboard PLC	Advanced Parameters	Technical Data	Diagnostics	UL Listing Information
								-					

	Demonstern		Ran	ge(û)		Default(⇔)				T	
	Parameter		OL	CL	OL	VT	sv	-		Туре	
2.01	Post ramp reference		±SPEED_FRE	Q_MAX Hz/rpm				RO	Bi	NC	PT
2.02	Ramp enable	{0.16 }		OFF (0) or On (1)		On	n (1)	RW	Bit		US
2.03	Ramp hold		- (-)	or On (1)		OFF (0)		RW	Bit		US
2.04	Ramp mode select	{0.15 }	FASt (0) Std (1) Std.hV (2)	FASt (0) Std (1)		Std (1)		RW	Txt		US
2.06	S ramp enable		OFF (0)	or On (1)		OFF (0)		RW	Bit		US
2.07	S ramp acceleration limit		0.0 to 300.0 s ² /100Hz	0.000 to 100.000 s ² /1000rpm	3.1	1.500	0.030	RW	Uni		US
2.08	Standard ramp voltage		0 to DC_VOLTA	GE_SET_MAX V	400	200V drive: 37: V drive: EUR> USA> 575V drive: 89: 690V drive: 107	750 775 5	RW	Uni	RA	US
2.10	Acceleration rate selector		01	to 9		0		RW	Uni		US
2.11	Acceleration rate 1	{0.03 }	0.0 to 3,200.0 s/100Hz	0.000 to 3,200.000 s/1,000rpm	5.0	2.000	0.200	RW	Uni		US
2.12	Acceleration rate 2		0.0 to 3,200.0 s/100Hz	0.000 to 3,200.000 s/1,000rpm	5.0	2.000	0.200	RW	Uni		US
2.13	Acceleration rate 3		0.0 to 3,200.0 s/100Hz	0.000 to 3,200.000 s/1,000rpm	5.0	2.000	0.200	RW	Uni		US
2.14	Acceleration rate 4		0.0 to 3,200.0 s/100Hz	0.000 to 3,200.000 s/1,000rpm	5.0	2.000	0.200	RW	Uni		US
2.15	Acceleration rate 5		0.0 to 3,200.0 s/100Hz	0.000 to 3,200.000 s/1,000rpm	5.0	2.000	0.200	RW	Uni		US
2.16	Acceleration rate 6		0.0 to 3,200.0 s/100Hz	0.000 to 3,200.000 s/1,000rpm	5.0	2.000	0.200	RW	Uni		US
2.17	Acceleration rate 7		0.0 to 3,200.0 s/100Hz	0.000 to 3,200.000 s/1,000rpm	5.0	2.000	0.200	RW	Uni		US
2.18	Acceleration rate 8		0.0 to 3,200.0 s/100Hz	0.000 to 3,200.000 s/1,000rpm	5.0	2.000	0.200	RW	Uni		US
2.19	Jog acceleration rate		0.0 to 3,200.0 s/100Hz	0.000 to 3,200.000 s/1,000rpm	0.2		000	RW	Uni		US
2.20	Deceleration rate selector		01	to 9		0		RW	Uni		US
2.21	Deceleration rate 1	{0.04 }	0.0 to 3,200.0 s/100Hz	0.000 to 3,200.000 s/1,000rpm	10.0	2.000	0.200	RW	Uni		US
2.22	Deceleration rate 2		0.0 to 3,200.0 s/100Hz	0.000 to 3,200.000 s/1,000rpm	10.0	2.000	0.200	RW	Uni		US
2.23	Deceleration rate 3		0.0 to 3,200.0 s/100Hz	0.000 to 3,200.000 s/1,000rpm	10.0	2.000	0.200	RW	Uni		US
2.24	Deceleration rate 4		0.0 to 3,200.0 s/100Hz	0.000 to 3,200.000 s/1,000rpm	10.0	2.000	0.200	RW	Uni		US
2.25	Deceleration rate 5		0.0 to 3,200.0 s/100Hz	0.000 to 3,200.000 s/1,000rpm	10.0	2.000	0.200	RW	Uni		US
2.26	Deceleration rate 6		0.0 to 3,200.0 s/100Hz	0.000 to 3,200.000 s/1,000rpm	10.0	2.000	0.200	RW	Uni		US
2.27	Deceleration rate 7		0.0 to 3,200.0 s/100Hz	0.000 to 3,200.000 s/1,000rpm	10.0	2.000	0.200	RW	Uni		US
2.28	Deceleration rate 8		0.0 to 3,200.0 s/100Hz	0.000 to 3,200.000 s/1,000rpm	10.0	2.000	0.200	RW	Uni		US
2.29	Jog deceleration rate		0.0 to 3,200.0 s/100Hz	0.000 to 3,200.000 s/1,000rpm	0.2	0.0	000		Uni		US
2.32	Acceleration select bit 0		OFF (0)	or On (1)		OFF (0)		RW	Bit	NC	
2.33	Acceleration select bit 1		. ,	or On (1)		OFF (0)		RW	Bit	NC	
2.34	Acceleration select bit 2		OFF (0)	or On (1)		OFF (0)		RW	Bit	NC	
2.35	Deceleration select bit 0		OFF (0)	or On (1)		OFF (0)		RW	Bit	NC	
2.36	Deceleration select bit 1		. ,	or On (1)		OFF (0)		RW	Bit	NC	
2.37	Deceleration select bit 2		OFF (0)	or On (1)		OFF (0)		RW	Bit	NC	
2.38	Inertia compensation torque			± 1,000.0 %				RO	Bi	NC	PT

RW	Read / Write	RO	Read only	Uni	Unipolar	Bi	Bi-polar	Bit	Bit parameter	Txt	Text string		
FI	Filtered	DE	Destination	NC	Not cloned	RA	Rating dependent	PT	Protected	US	User save	PS	Power down save


Safety	Product	Mechanical	Electrical	Gettina	Basic	Running the		Smartcard	Onboard	Advanced	Technical		UL Listina
caloty		moonamoan	2.000.000	coung	Baolo	i tai iiiig iiio	Optimisation	omantoara				Diagnostics	or round
Information	Information	Installation	Installation	Started	Parameters	motor	Optimisation	operation	PLC	Parameters	Data	Diagnostics	Information
intornation	monnation	matanation	motanation	otaricu	Falameters	motor		operation	I LO	i arameters	Data		mormation


11.3 Menu 3: Frequency slaving, speed feedback and speed control Figure 11-3 Menu 3 Open-loop logic diagram


Unidrive SP User Guide Issue Number: 11

Safe Informa	, LY	Product Information	Mechanical Installation	Electrical Installation	Getting Started	Basic Parameters	Running the motor	Optimisation	Smartcard operation	Onboard PLC	Advanced Parameters	Technical Data	Diagnostics	UL Listing Information
	ation	internation	motanation	motanation	etantea	1 arametere	motor		oporation	. 20	ananotoro	Bala		monnation

Safety	Product	Mechanical	Electrical	Getting	_	Running the	Optimisation	Smartcard	Onboard	Advanced	Technical	Diagnostics	UL Listing
Information	Information	Installation	Installation	Started	Parameters	motor	•	operation	PLC	Parameters	Data	8	Information

	ation Information Installation Installation Starte	d Parameters	motor		opera		.C Param	leters Da	ata			cs Inf	orma	ation
	Parameter		Rang				Default(⇔				Ту	pe		
	OL> Frequency slaving demand	OL ±1,000.0 Hz		CL	_	OL	VT	SV	RO	Bi	FI	NC	PT	-
3.01	CL> Final speed reference	1,000.0112		±SPEED_MAX r	rpm				RO	Bi	FI		PT	
3.02	Speed feedback {0.10	}		±SPEED_MAX r	rpm				RO	Bi	FI	NC	PT	t
3.03	Speed error			±SPEED_MAX r	rpm				RO	Bi	FI	NC	PT	
3.04	Speed controller output			±Torque_prod					RO	Bi	FI	NC	PT	
3.05	Zero speed threshold	0.0 to 20.0 H	7	current_max % 0 to 200 rpm		1.0	1	5	RW	Uni	<u> </u>			US
3.06	At speed lower limit	0.0 to 3,000.0		0 to 40,000 rpr		1.0		5	RW					US
3.07	At speed upper limit	0.0 to 3,000.0		0 to 40,000 rpr		1.0		5	RW	Uni				U
3.08	Overspeed threshold {0.26	}		0 to 40,000 rpr	m			0	RW	Uni				US
3.09	Absolute 'at speed' detect	OF	FF (0) c	or On (1)			OFF (0)		RW	Bit				US
3.10	Speed controller proportional gain (Kp1) {0.07	}		0.0000 to 6.553 1/rad s ⁻¹	35		0.0	100	RW	Uni				U
3.11	Speed controller integral gain (Ki1) {0.08	}	0.	.00 to 655.35 s/ra	ad s ⁻¹		1.	.00	RW	Uni				U
3.12	Speed controller differential feedback gain {0.09	}		0.00000 to 0.655 s ⁻¹ /rad s ⁻¹	535		0.0	0000	RW	Uni				U
	OL> Enable frequency slaving	OFF (0) or On	(1)	5 /180 5		OFF (0)			RW	Bit	-		-	US
3.13	CL> Speed controller proportional gain (Kp2)			0.0000 to 6.553 1/rad s ⁻¹	35		0.0	100	RW	Uni				US
	OL> Slaving ratio numerator	0.000 to 1.00	0	1/100 0		1.000			RW	Uni				U
3.14	CL> Speed controller integral gain (Ki2)			0.00 to 655.35 1/	/rad		1.	.00	RW					US
	OL> Slaving ratio denominator	0.001 to 1.00	0			1.000			RW	Uni				U
3.15	CL> Speed controller differential feedback gain (Kd2)		(0.00000 to 0.655	35 s		0.0	0000	RW	Uni				US
	OL> Enable frequency slaving output	OFF (0) or On	(1)			OFF (0)			RW	Bit				US
3.16	CL> Speed controller gain select			OFF (0) or On ((1)		OF	F (0)	RW	Bit				US
3.17	OL> Select x2048 output	OFF (0) or On	(1)			On (1)			RW	Bit				U
0.11	CL> Speed controller set-up method			0 to 3				0	RW	Uni				U
3.18	OL> Select F and D frequency slaving output	OFF (0) or On	. ,			OFF (0)			RW	Bit				US
	CL> Motor and load inertia			0.00010 to 90.00 kg m ²	000		0.0	0000	RW	Uni				US
3.19	Compliance angle			0.0 to 359.9 $^\circ$			4	.0	RW	Uni				US
3.20	Bandwidth			0 to 255 Hz				0	RW	Uni				U
3.21	Damping factor			0.0 to 10.0	_		1	.0	RW	Uni				U
3.22	Hard speed reference			±SPEED_FREC MAX rpm	J_		C	0.0	RW	Bi				U
3.23	Hard speed reference selector			OFF (0) or On ((1)			F (0)	RW	Bit				U
3.24	Closed-loop vector mode			VT> 0 to 3			0		RW	Uni				U
3.25	Encoder phase angle* {0.43	}		SV> 0.0 to 359.				0.0	RW	Uni				U
3.26	Speed feedback selector			drv (0), SLot1 (SLot2 (2), SLot3			drv	<i>י</i> (0)	RW	Txt				U
3.27	Drive encoder speed feedback		40,000						RO					
3.28	Drive encoder revolution counter	-	,	revolutions					-	Uni		NC		
3.29	Drive encoder position {0.11			hs of a revolution					RO					
3.30	Drive encoder fine position	0 to 65,535	1/2 ³² n	ds of a revolution	۱				RO	Uni	FI	NC	PT	
3.31	Drive encoder marker position reset disable	OF	FF (0) c	or On (1)			OFF (0)		RW	Bit				U
3.32	Drive encoder marker flag	OF	F (0) c	or On (1)			OFF (0)		RW	Bit		NC		
3.33	Drive encoder turn bits / Linear encoder		0 to 2	255	Ī		16		RW	Uni				U
	comms to sine wave ratio							1000			<u> </u>			
3.34	Drive encoder lines per revolution {0.27 Drive encoder single turn comms bits /	}	0 to 50	,		10	24	4096	-	Uni	├──	\vdash		U
3.35	Linear encoder comms bits / Marker mode		0 to 32	2 bits			0		RW	Uni				U
3.36	Drive encoder supply voltage**			1), 15V (2)			5V (0)		RW	Txt				U
3.37	Drive encoder comms baud rate	1000 (5), 1	500 (6)	(2), 400 (3), 500 , 2000 (7) kBaud	l`		300 (2)		RW	Txt				U
3.38	Drive encoder type	Fd.SErvo (SC.Hiper (7)	4), Fr.S , EndAt	2), Ab.SErvo (3), Ervo (5), SC (6), (8), SC.EndAt (9 C.SSI (11)		Ab	(0)	Ab.SErvo (3)	RW	Txt				U
3.39	Drive encoder termination select / Rotary encoder select / Comms only encoder mode		0 to	02			1		RW	Uni				U
		Bit 0 (LSB) = W												
3.40	Drive encoder error detection level	Bit 1 = Phase e	SI pow	tect er supply bit mor	nitor	0		1	RW	Uni				U

Safe Inform	-	0	Basic Parameters	Running the motor	Optimisation	Smartca operatio			Advanced Parameters	Technie Data		Diagr	nostic		L Lis iorma	ting ation
	Parameter			Range	(\$)			Defau	ult(⇔)				TV	no		
	Falameter		OL		CL		OL	V	Т	SV			Тy	ре		
3.42	Drive encoder filter		0 (0), 1 (1)	, 2 (2), 4 (3), 8 (4), 16 (5)	ms		()		RW	Txt				US
3.43	Maximum drive encoder reference			0 to 40,00	0 rpm		15	500	3	000	RW	Uni				US
3.44	Drive encoder reference scaling			0.000 to 4	4.000			1.0	000		RW	Uni				US
3.45	Drive encoder reference			±100.0)%						RO	Bi	FI	NC	PT	
3.46	Drive encoder reference destination			Pr 0.00 to	21.50			Pr C	0.00		RW	Uni		DE	PT	US
3.47	Re-initialise position feedback			OFF (0) or	On (1)			OFF	- (0)		RW	Bit		NC		
3.48	Position feedback initialised			OFF (0) or	On (1)						RO	Bit		NC	PT	
3.49	Full motor object electronic namepla transfer	ite		OFF (0) or	On (1)			OFF	- (0)		RW	Bit				US
3.50	Position feedback lock			OFF (0) or	On (1)			OFF	= (0)		RW	Bit		NC		

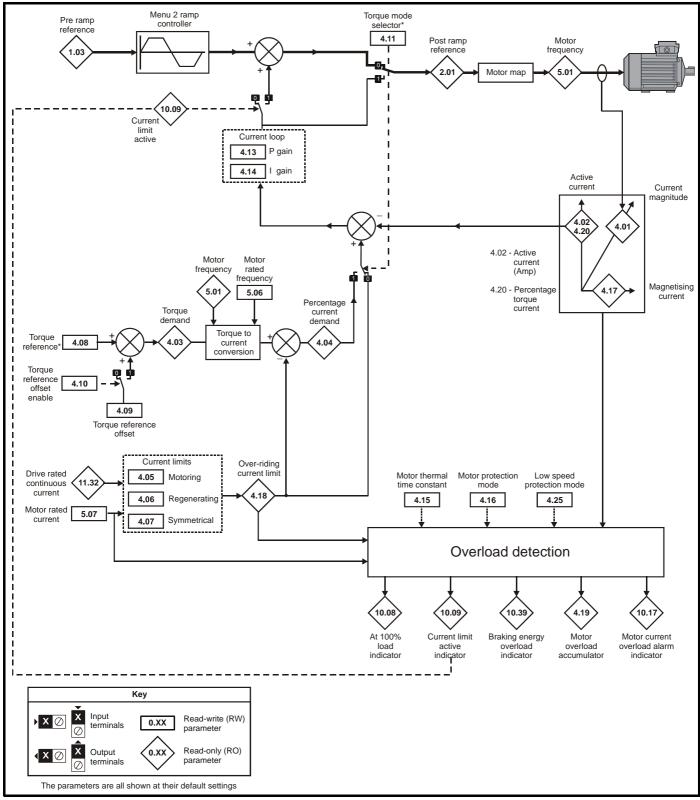
RW	Read / Write	RO	Read only	Uni	Unipolar	Bi	Bi-polar	Bit	Bit parameter	Txt	Text string		
FI	Filtered	DE	Destination	NC	Not cloned	RA	Rating dependent	PT	Protected	US	User save	PS	Power down save

*Encoder phase angle (servo mode only)

With drive software version V01.08.00 onwards, the encoder phase angles in Pr **3.25** and Pr **21.20** are cloned to the SMARTCARD when using any of the SMARTCARD transfer methods.

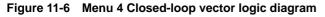
With drive software version V01.05.00 to V01.07.01, the encoder phase angles in Pr **3.25** and Pr **21.20** are only cloned to the SMARTCARD when using either Pr **0.30** set to Prog (2) or Pr **xx.00** set to 3yyy.

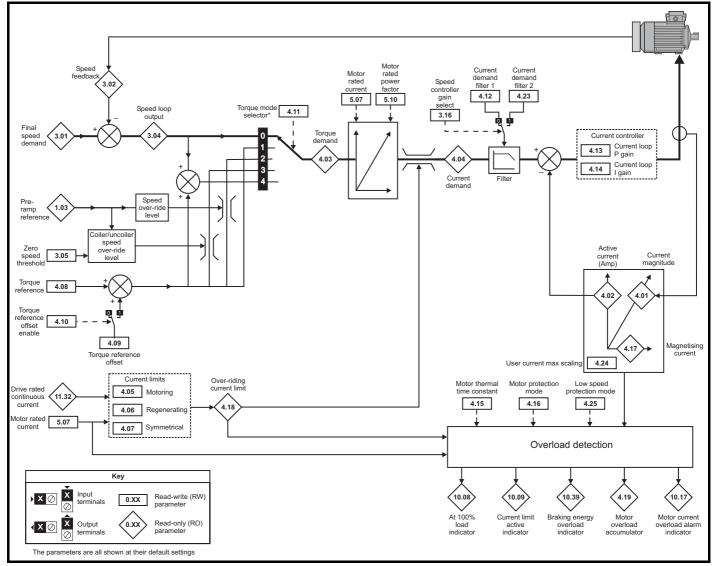
This is useful when the SMARTCARD is used to back-up the parameter set of a drive but caution should be used if the SMARTCARD is used to transfer parameter sets between drives. Unless the encoder phase angle of the servo motor connected to the destination drive is known to be the same as the servo motor connected to the source drive, an autotune should be performed or the encoder phase angle should be entered manually into Pr 3.25 (or Pr 21.20). If the encoder phase angle is incorrect the drive may lose control of the motor resulting in an O.SPd or Enc10 trip when the drive is enabled. With drive software version V01.04.00 and earlier, or when using software version V01.05.00 to V01.07.01 and Pr xx.00 set to 4yyy is used, then the encoder phase angles in Pr 3.25 and Pr 21.20 are not cloned to the SMARTCARD. Therefore, Pr 3.25 and Pr 21.20 in the destination would not be changed during a transfer of this data block from the SMARTCARD.


NOTE

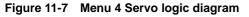
**If Ab encoder voltage is greater than 5V, then the termination resistors must be disabled Pr 3.39 to 0.

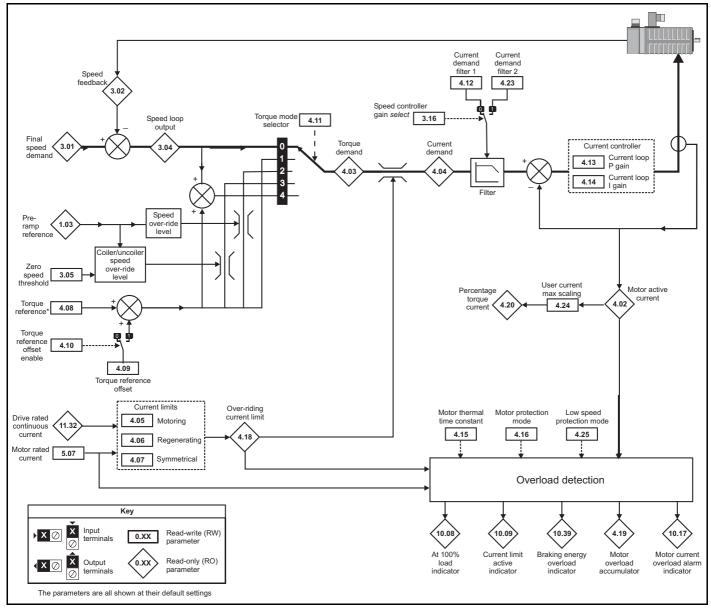
Ir	Safety oformation	Product Information	Mechanical Installation	Electrical Installation	Getting Started	Basic Parameters	Running the motor	Optimisation	Smartcard operation	Onboard PLC	Advanced Parameters	Technical Data	Diagnostics	UL Listing Information
										-				


11.4 Menu 4: Torque and current control


Figure 11-5 Menu 4 Open loop logic diagram

For more information, refer to section 11.21.4 Torque modes on page 250.


Safety Information Product Mechanical Installation Electrical Installation Getting Started Basic Parameters Running the motor Optimisation Smartcard operation Onboard PLC Advanced Parameters Technical Data Distallation	Diagnostics UL Listing Information
--	---------------------------------------

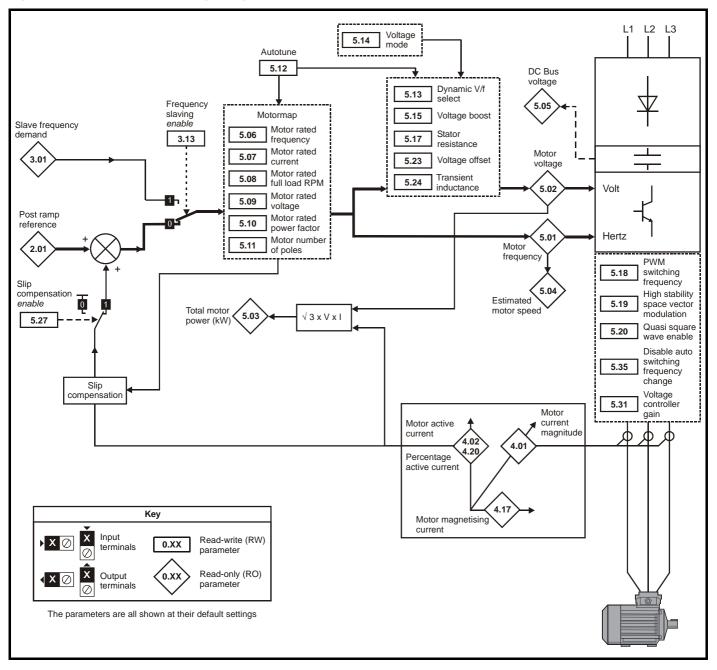


*For more information, refer to section 11.21.4 Torque modes on page 250.

Safety Information	Product Information	Mechanical Installation	Electrical Installation	Getting Started	Basic Parameters	Running the motor	Optimisation	Smartcard operation	Onboard PLC	Advanced Parameters	Data	Diagnostics	UL Listing Information
									. = .				

*For more information, refer to section 11.21.4 Torque modes on page 250.

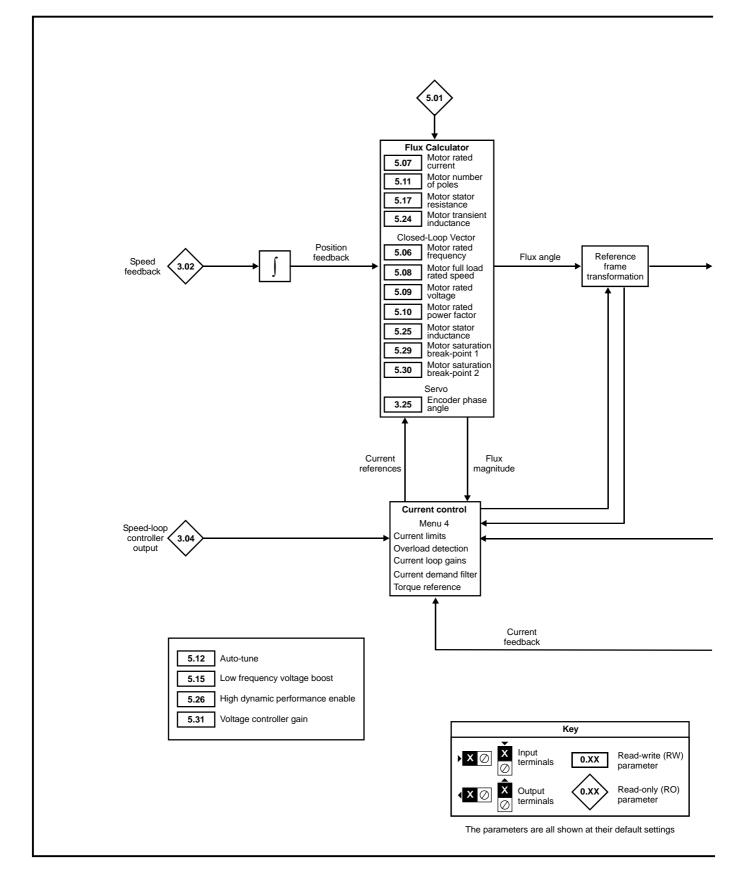
Optimisation	Smartcard operation Onboard PLC Advanced Parameters Technical Data Diagnostics UL Listing Information
--------------	--

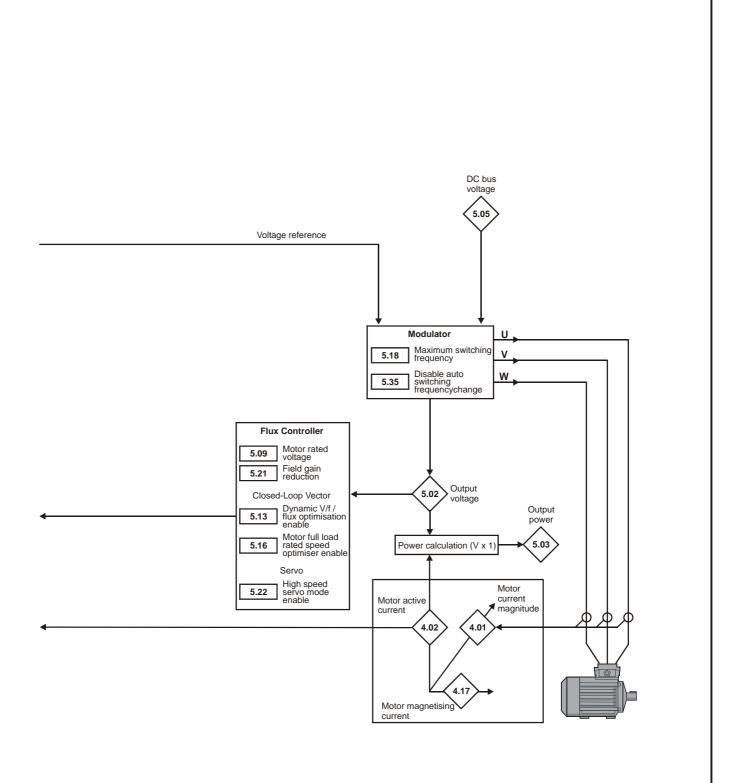

	Parameter		Ran	ge(\$)		Default(⇔)				Ту	ne		
	rarameter		OL	CL	OL	VT	SV			ij	pe		
4.01	Current magnitude	{0.12 }	0 to DRIVE_CU	JRRENT_MAX A				RO	Uni	FI	NC	PT	
4.02	Active current	{0.13 }	±DRIVE_CUF	RRENT_MAX A				RO	Bi	FI	NC	PT	
4.03	Torque demand		±TORQUE_PROD	_CURRENT_MAX %				RO	Bi	FI	NC	PT	
4.04	Current demand		±TORQUE_PROD	_CURRENT_MAX %				RO	Bi	FI	NC	PT	
4.05	Motoring current limit		0 to MOTOR1_CUR	RENT_LIMIT_MAX %	165.0	1	75.0	RW	Uni		RA		US
4.06	Regen current limit		0 to MOTOR1_CUR	RENT_LIMIT_MAX %	165.0	1	75.0	RW	Uni		RA		US
4.07	Symmetrical current limit	{0.06 }	0 to MOTOR1_CUR	RENT_LIMIT_MAX %	165.0	1	75.0	RW	Uni		RA		US
4.08	Torque reference		±USER_CUR	RENT_MAX %		0.00		RW	Bi				US
4.09	Torque offset		±USER_CUR	RENT_MAX %		0.0		RW	Bi				US
4.10	Torque offset select		OFF (0)	or On (1)		OFF (0)		RW	Bit				US
4.11	Torque mode selector	{0.14 }	0 to 1	0 to 4		0		RW	Uni				US
4.12	Current demand filter 1	{0.17 }		0.0 to 25.0 ms		(0.0	RW	Uni				US
4.13	Current controller Kp gain	{ 0.38 }	0 to 3	30,000	20	400V c 575V c 690V c	drive: 75 Irive: 150 Irive: 180 Irive: 215	RW	Uni				US
4.14	Current controller Ki gain	{0.39 }	0 to 3	30,000	40	400V d 575V d	rive: 1000 rive: 2000 rive: 2400 rive: 3000	RW	Uni				US
4.15	Thermal time constant	{0.45 }	0.0 to	3000.0	89.0	89.0	20.0	RW	Uni				US
4.16	Thermal protection mode		0	to 1		0		RW	Bit				US
4.17	Reactive current		±DRIVE_CUF	RRENT_MAX A				RO	Bi	FI	NC		
4.18	Overriding current limit		±TORQUE_PROD	_CURRENT_MAX %				RO	Uni		NC	PT	
4.19	Overload accumulator		0 to 1	00.0 %				RO	Uni		NC	PT	
4.20	Percentage load		±USER_CUR	RENT_MAX %				RO	Bi	FI	NC	PT	
4.22	Inertia compensation enable			OFF (0) or On (1)		OF	F (0)	RW	Bit				US
4.23	Current demand filter 2			0.0 to 25.0 ms		(0.0	RW	Uni				US
4.24	User current maximum scaling		0.0 to TORQUE_PRC	D_CURRENT_MAX %	165.0	17	75.0	RW	Uni		RA		US
4.25	Low speed thermal protection mode		OFF (0)	or On (1)		OFF (0)		RW	Bit				US
4.26	Percentage torque		±USER_CURRENT_ MAX %					RO	Bi	FI	NC	PT	

RW	Read / Write	RO	Read only	Uni	Unipolar	Bi	Bi-polar	Bit	Bit parameter	Txt	Text string		
FI	Filtered	DE	Destination	NC	Not cloned	RA	Rating dependent	PT	Protected	US	User save	PS	Power down save

Safety Information	Product n Information	Mechanical Installation	Electrical Installation	Getting Started	Basic Parameters	Running the motor	Optimisation	Smartcard operation	Onboard PLC	Advanced Parameters	Technical Data	Diagnostics	UL Listing Information
-----------------------	--------------------------	----------------------------	----------------------------	--------------------	---------------------	-------------------	--------------	------------------------	----------------	------------------------	-------------------	-------------	---------------------------

11.5 Menu 5: Motor control

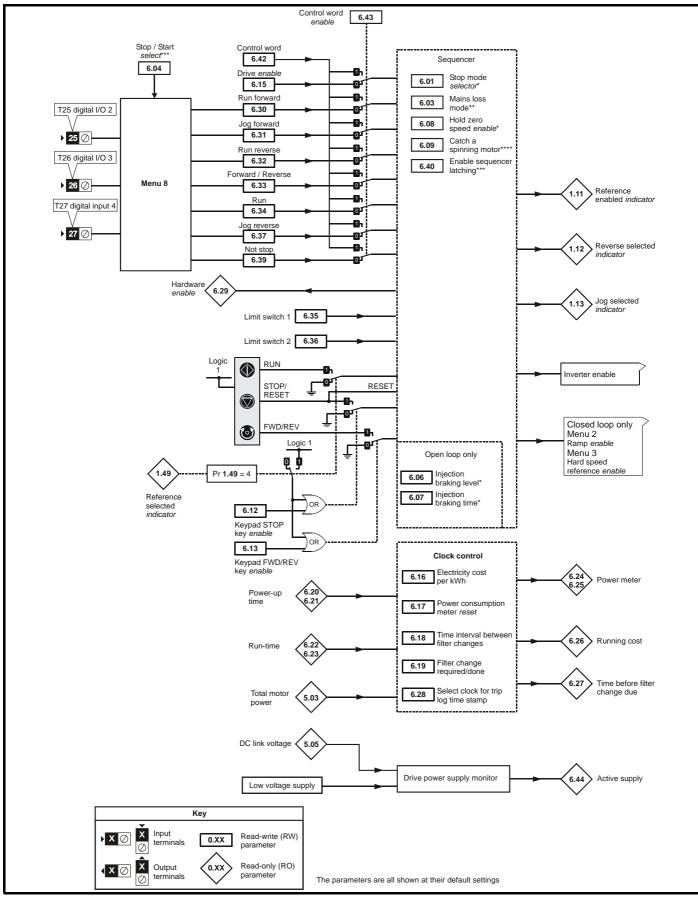

Figure 11-8 Menu 5 Open-loop logic diagram


								-					
Safety	Product	Mechanical	Electrical	Getting	Basic	Running the	Ontimisation	Smartcard	Onboard	Advanced	Technical	Diagnostica	UL Listing
Information	Information	Installation	Installation	Started	Parameters	motor	Optimisation	operation	PLC	Parameters	Data	Diagnostics	Information

Safety	Product	Mechanical	Electrical	Getting	_	Running the	Optimisation	Smartcard	Onboard	Advanced	Technical	Diagnostics	UL Listing
Information	Information	Installation	Installation	Started	Parameters	motor	Optimisation	operation	PLC	Parameters	Data	Diagnostics	Information

Safety	Product	Mechanical	Electrical	Getting	Basic	Running the	0	Smartcard	Onboard	Advanced	Technical	Discussion	UL Listing
Information	Information	Installation	Installation	Started	Parameters	motor	Optimisation	operation	PLC	Parameters	Data	Diagnostics	Information

Optimisation	Smartcard operation Onboard PLC Advanced Parameters Technical Data Diagnostics UL Listing Information
--------------	--


	_		Ran	ge(‡)		Default(⇔)				_			I
	Parameter		OL	CL	OL	VT	SV			Ту	pe		
5.01	Output frequency	{0.11 }	±SPEED_FREQ_ MAX Hz	±1,250.0 Hz				RO	Bi	FI	NC	PT	
5.02	Output voltage			Itage_max V				RO	Uni	FI	NC	PT	
5.03	Output power		_	_max kW				RO	Bi	FI	NC	PT	
5.04	Motor rpm	{0.10 }	±180,000 rpm					RO	Bi	FI	NC		
5.05	D.C bus voltage			oltage_max V			-	RO	Uni	FI	NC	PT	
5.06	Rated frequency	{0.47}	0 to 3,000 Hz	VT> 0 to 1,250.0 Hz		0, USA> 60.0		RW	Uni				US
5.07	Motor rated current	{ 0.46 }	0 to Rated_c	current_max A		rated current [11		RW	Uni		RA		US
5.08	Rated load rpm / rated speed	{0.45 }	0 to 180,000 rpm	0.00 to 40,000.00 rpm	USA> 1,800	EUR> 1,450.00 USA> 1,770.00 200V drive: 230		RW	Uni				US
5.09	Rated voltage	{0.44 }		GE_SET_MAX V		V drive: EUR> 4 USA> 4 575V drive: 575 690V drive: 690			Uni		RA		US
5.10	Rated power factor	{0.43 }		0.000 to 1.000		.850		RW	Uni		RA		US
5.11	Number of motor poles	{0.42 }	Auto to 120	Pole (0 to 60)	Au	ito (0)	6 POLE (3)	RW	Txt				US
5.12	Autotune	{0.40 }	0 to 2	VT> 0 to 4 SV> 0 to 6		0		RW	Uni		NC		
5.13	Dynamic V/F / flux optimise select	{0.09 }	OFF (0) or On (1)	VT> OFF (0) or On (1)	OI	FF (0)		RW	Bit				US
5.14	Voltage mode select	{0.07 }	Ur_S (0), Ur (1), Fd (2), Ur_Auto (3), Ur_I (4), SrE (5)	0)/(5 (0)	Ur_I (4)			RW	Txt				US
	Action on enable			SV> nonE (0), Ph EnL (1), Ph Init (2)			nonE(0)		Txt				US
5.15	Low frequency voltage boost	{0.08 }	0.0 to 25.0 % of r	notor rated voltage	3.0	1.0		RW	Uni				US
5.16	Rated rpm autotune	{0.33 }		VT> 0 to 2		0		RW	Uni				US
5.17	Stator resistance			200 to 65.000 Ω 65.000 x 10 m Ω		0.0		RW	Uni		RA		US
5.18	Maximum switching frequency	{0.41 }	3 (0), 4 (1), 6 (2), 8	(3), 12 (4), 16 (5) kHz	3	3 (0)	6 (2)	RW	Txt		RA		US
5.19	High stability space vector modulation		OFF (0) or On (1)		OFF (0)			RW	Bit				US
5.20	Quasi-square enable		OFF (0) or On (1)		OFF (0)			RW	Bit				US
5.21	Field gain reduction			OFF (0) or On (1)		OFF	(0)	RW	Bit				US
5.22	High speed servo mode enable			SV> OFF (0) or On (1)			0	RW	Bit				US
5.23	Voltage offset		0.0 to 25.0 V		0.0			RW	Uni		RA		US
5.24	Transient inductance (σL_s)		0.000 to 5	600.000 mH		0.000		RW	Uni		RA		US
5.25	Stator inductance (L _s)			VT> 0.00 to 5,000.00 mH		0.00		RW	Uni		RA		US
5.26	High dynamic performance enable			OFF (0) or On (1)		OFF	(0)	RW	Bit				US
5.27	Enable slip compensation		OFF (0) or On (1)		On (1)			RW	Bit				US
5.28	Field weakening compensation disable			VT> OFF (0) or On (1)		OFF (0)		RW	Bit				US
5.29	Motor saturation breakpoint 1			VT> 0 to 100% of rated flux		50		RW	Uni				US
5.30	Motor saturation breakpoint 2			VT> 0 to 100% of rated flux		75			Uni				US
5.31	Voltage controller gain		0 t	o 30		1		RW	Uni				US
5.32	Motor torque per amp, K _t			VT> 0.00 to 500.00 N m A ⁻¹ SV> 0.00 to 500.00					Uni				US
	Matazinaka posit 000			N m A ⁻¹			1.60		Uni				US
5.33	Motor volts per 1,000 rpm, Ke			SV> 0 to 10,000 V			98	RW	Uni				US
5.35	Disable auto switching frequency change		OFF (0)	or On (1)		OFF (0)		RW	Bit				US
5.36	Motor pole pitch		0 to 65	5.35 mm		0.00		RW	Uni				US
5.37	Actual switching frequency			12 (4), 16 (5), 6 rEd (6), Ed (7)				RO	Txt		NC	PT	
5.38	Minimal movement phasing te	st angle		SV> 0.0 to 25.5°			5.0	RW	Uni				US
5.39	Minimal movement phasing			SV> 0 to 3			0		Uni				US
5.40	test pulse length Spin start boost		0.0 to 10.0	VT> 0.0 to 10.0		1.0			Uni				US
J.4 0	opin start boost		0.0 10 10.0	v i > 0.0 to 10.0		1.0		RVV	UNI				05

RW	Read / Write	RO	Read only	Uni	Unipolar	Bi	Bi-polar	Bit	Bit parameter	Txt	Text string		
FI	Filtered	DE	Destination	NC	Not cloned	RA	Rating dependent	PT	Protected	US	User save	PS	Power down save

1	Safety	Product	Mechanical	Electrical	Getting	Basic	Running the	Optimisation	Smartcard	Onboard	Advanced	Technical	Diagnostics	UL Listing
	Information	Information	Installation	Installation	Started	Parameters	motor	Optimisation	operation	PLC	Parameters	Data	Diagnostics	Information

11.6 Menu 6: Sequencer and clock

Figure 11-10 Menu 6 logic diagram

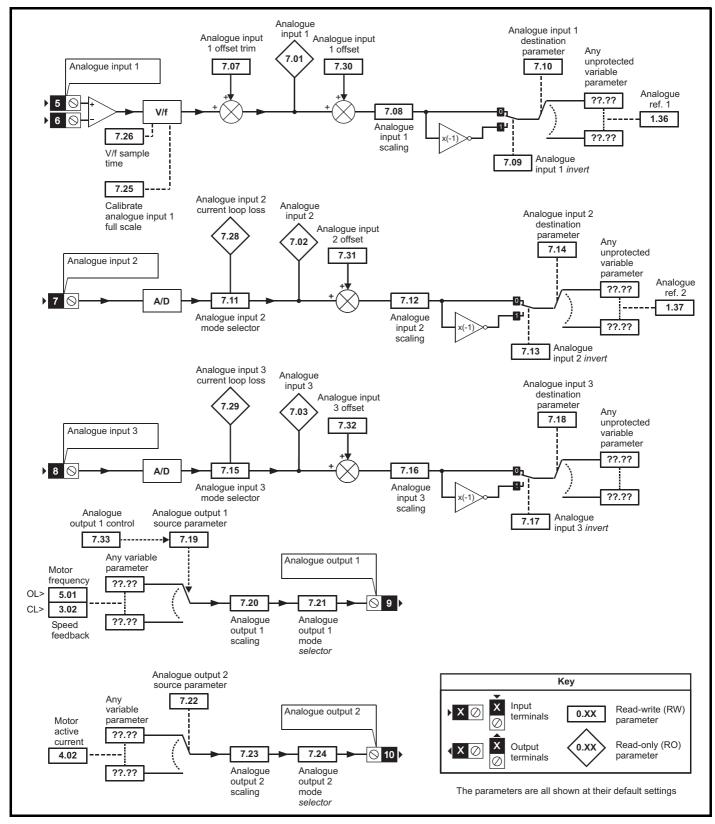
Safety Product Mechanical Electrical Getting Basic Running the motor Optimisation Information Installation Installation Started Parameters Motor Optimisation	Smartcard operation PLC Parameters Data Diagnostics UL Listing Information
--	--

	-	Ran	ge(‡)		Default(⇔)				-			
	Parameter	OL	CL	OL	VT	SV			Ту	эе		
6.01	Stop mode	COASt (0), rP (1), rP.dcl (2), dcl (3), td.dcl (4), diSAbLE (5)	COASt (0), rP (1), no.rP (2)	rP	(1)	no.rP (2)	RW					US
	Mains loss mode	· · · ·	(1), ridE.th (2)		diS (0)		RW					US
	Start / stop logic select		to 4		4		RW	Uni				US
	Injection braking level	0 to 150.0%		100.0%				Uni		RA		US
6.07	Injection braking time	0.0 to 25.0s	2 (1)	1.0			RW	Uni				US
	Hold zero speed		or On (1)	OFF	- (0)	On (1)	RW	Bit				US
	Catch a spinning motor {0.33}	0 to 3	0 to 1	0		1	RW	Uni				US
	Enable stop key	. ,	or On (1)		OFF (0) OFF (0)		RW	Bit				US
	Enable forward / reverse key {0.28} Drive enable		or On (1) or On (1)		OFF (0) On (1)		RW RW	Bit Bit				US US
	Electricity cost per kWh	. ,	ency units per kWh		01(1)		RW	Uni				US
	Reset energy meter		or On (1)		OFF (0)		RW	Bit		NC		03
	Time between filter changes		0.000 hrs		0		RW	Uni		NC		US
6.19	Filter change required /		or On (1)		OFF (0)		RW				PT	00
6.20	change done Powered-up time: years.days	0 to 9.364	years.days				RW	Uni		NC	PT	
6.21	Powered-up time: hours.minutes	0 to 23.59 h	nours.minutes				RW	Uni		NC	PT	
6.22	Run time: years.days	0 to 9.364	years.days				RO	Uni		NC	PT	
6.23	Run time: hours.minutes	0 to 23.59 h	nours.minutes				RO	Uni		NC	PT	PS
6.24	Energy meter: MWh	±999.	9 MWh				RO	Bi		NC	PT	PS
6.25	Energy meter: kWh	±99.9	99 kWh				RO	Bi		NC	PT	PS
6.26	Running cost	±32	2,000				RO	Bi		NC		
6.27	Time before filter change due	0 to 30),000 hrs				RO	Uni		NC	PT	PS
6.28	Select clock for trip log time sampling	OFF (0)	or On (1)		OFF (0)		RW	Bit				US
	Hardware enable		or On (1)				RO	Bit		NC	PT	
	Sequencing bit: Run forward	,	or On (1)		OFF (0)		RW	Bit		NC		
6.31	Sequencing bit: Jog forward	()	or On (1)		OFF (0)		RW	Bit		NC		
6.32	Sequencing bit: Run reverse	OFF (0)	or On (1)		OFF (0)		RW	Bit		NC		
6.33	Sequencing bit: Forward / reverse	OFF (0)	or On (1)		OFF (0)		RW	Bit		NC		
	Sequencing bit: Run		or On (1)		OFF (0)		RW	Bit		NC		
	Forward limit switch		or On (1)		OFF (0)		RW	Bit		NC		
	Reverse limit switch		or On (1)		OFF (0)		RW	Bit		NC		
	Sequencing bit: Jog reverse	. ,	or On (1)		OFF (0)		RW	Bit		NC		
	Sequencing bit: Not stop	.,	or On (1)		OFF (0)		RW	Bit		NC		
	Enable sequencer latching	. ,	or On (1)	I	OFF (0)		RW	Bit		NIC		US
	Drive event flags		65,535		0		RW	Uni		NC		
	Control word		32,767		-		RW RW	Uni Bit		NC		US
	Control word enable Active supply		or On (1) or On (1)		OFF (0)		RW			NC	рт	05
6.44 6.45	Force cooling fan to run at full		or On (1)		OFF (0)		RW			NC	PI	US
	speed		. ,		. ,						DT	
6.46 6.47	Normal low voltage supply Disable mains/phase loss		2 and 3: 48V to 72V or On (1)		48 OFF (0)		RW RW				PI	US US
6.48	detection from input rectifier Mains loss ride through	. ,	GE SET MAX V		e: 205, 400V		RW			RA		US
6.49	detection level Disable multi-module drive module number storing on trip		or On (1)	575V driv	ve: 540, 690V OFF (0)	arive: 540	RW					US
6.50	module number storing on trip Drive comms state	. ,	SLot 2 (2), SLot 3 (3)		X - 7		RO			NC	PT	-
	External rectifier not active		or On (1)		OFF (0)		RW					

RW	Read / Write	RO	Read only	Uni	Unipolar	Bi	Bi-polar	Bit	Bit parameter	Txt	Text string		
FI	Filtered	DE	Destination	NC	Not cloned	RA	Rating dependent	PT	Protected	US	User save	PS	Power down save

*For more information, refer to section 11.21.5 Stop modes on page 251.

**For more information, refer to section 11.21.6 *Mains loss modes* on page 252.


***For more information, refer to section 11.21.7 *Start / stop logic modes* on page 253.

****For more information, refer to section 11.21.8 *Catch a spinning motor* on page 254.

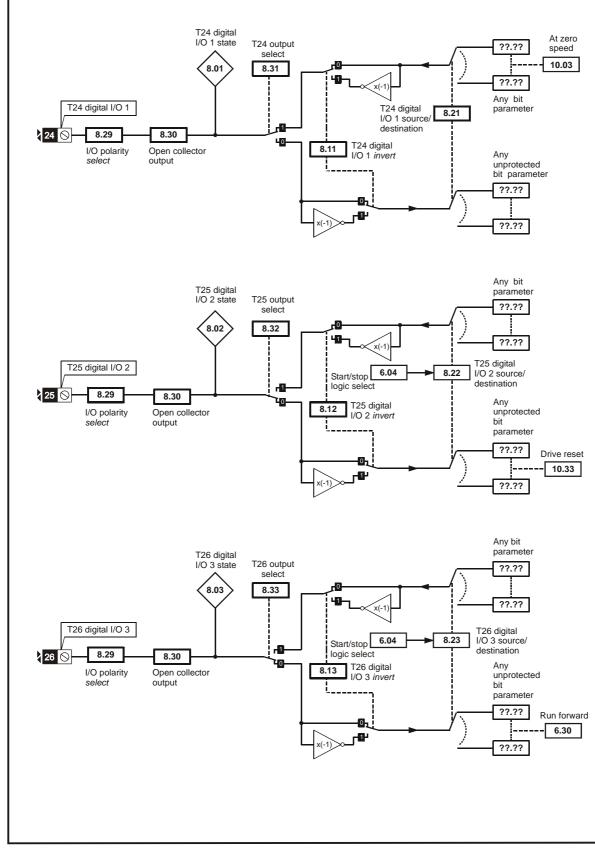
Safety	Product	Mechanical	Electrical	Getting	Basic	Running the	Ontimination	Smartcard	Onboard	Advanced	Technical	Diagnostica	UL Listing
Information	Information	Installation	Installation	Started	Parameters	motor	Optimisation	operation	PLC	Parameters	Data	Diagnostics	Information

11.7 Menu 7: Analogue I/O

Figure 11-11 Menu 7 logic diagram

		afety rmation	Product Information	Mechanical Installation	Electrical Installation	Getting Started	Basic Parameters	Running the motor	Optimisation	Smartcard operation	Onboard PLC	Advanced Parameters	Technical Data	Diagnostics	UL Listing Information
--	--	------------------	------------------------	----------------------------	----------------------------	--------------------	---------------------	-------------------	--------------	---------------------	----------------	------------------------	-------------------	-------------	---------------------------

	Parameter		Ranç	je(\$)		Default(⇔)				Ту	no		
	Farameter		OL	CL	OL	VT	SV			iy	he		
7.01	T5/6 analogue input 1 level			.00 %				RO			NC		
7.02	T7 analogue input 2 level			0.0 %				RO	Bi		-	PT	
7.03	T8 analogue input 3 level			0.0 %				RO	Bi		NC		
7.04	Power circuit temperature 1		-128 to	127 °C				RO	Bi		NC		
7.05	Power circuit temperature 2		-128 to	127 °C				RO	Bi			PT	
7.06	Control board temperature		-128 to	127 °C				RO	Bi		NC	PT	
7.07	T5/6 analogue input 1 offset {0.	.13}	±10.0	000 %		0.000		RW	Bi				US
7.08	T5/6 analogue input 1 scaling			4.000		1.000		RW	Uni				US
7.09	T5/6 analogue input 1 invert		OFF (0)	or On (1)		OFF (0)		RW	Bit				US
7.10	T5/6 analogue input 1 destination			to 21.51		Pr 1.36		RW	Uni	DE		PT	US
7.11	5	.19}	4-20 (4), 20-4	-20.tr (2), 20-4.tr (3), 4 (5), VOLt (6)		VOLt (6)			Txt				US
7.12	T7 analogue input 2 scaling			4.000		1.000		RW	Uni				US
7.13	T7 analogue input 2 invert		OFF (0)	or On (1)		OFF (0)		RW	Bit				US
7.14	T7 analogue input 2 {0. destination	. 20 }		to 21.51		Pr 1.37		RW	Uni	DE		PT	US
7.15	T8 analogue input 3 mode {0.	.21}	4-20 (4), 20-4 (5),	-20.tr (2), 20-4.tr (3), VOLt (6), th.SC (7), h.diSP (9)		VOLt (6)		RW	Txt				US
7.16	T8 analogue input 3 scaling		0 to 4	4.000		1.000		RW	Uni				US
7.17	T8 analogue input 3 invert		OFF (0)	or On (1)		OFF (0)		RW	Bit				US
7.18	T8 analogue input 3 destination			to 21.51		Pr 0.00		RW	••••	DE		PT	US
7.19	T9 analogue output 1 source			to 21.51	Pr 5.01		3.02	RW	Uni			PT	US
7.20	T9 analogue output 1 scaling			o 4.000		1.000		RW	Uni				US
7.21	T9 analogue output 1 mode		().	4-20 (2), H.SPd (3)		VOLt (0)		RW	Txt				US
7.22	T10 analogue output 2 source		Pr 0.00	to 21.51		Pr 4.02		RW	Uni			PT	US
7.23	T10 analogue output 2 scaling			o 4.000		1.000		RW	Uni				US
7.24	T10 analogue output 2 mode		VOLt (0), 0-20 (1),	4-20 (2), H.SPd (3)		VOLt (0)		RW	Txt				US
7.25	Calibrate T5/6 analogue input 1 full scale		OFF (0)	or On (1)		OFF (0)		RW	Bit		NC		
7.26	T5/6 analogue input 1 sample time		0 to 8	3.0 ms		4.0		RW	Uni				US
7.28	T7 analogue input 2 current loop loss		OFF (0)	or On (1)				RO	Bit		NC	PT	
7.29	T8 analogue input 3 current loop loss		OFF (0)	or On (1)				RO	Bit		NC	PT	
7.30	T5/6 analogue input 1 offset			.00 %		0.00		RW	Bi				US
7.31	T7 analogue input 2 offset			0.0 %		0.0		RW	Bi				US
7.32	T8 analogue input 3 offset			0.0 %		0.0		RW	Bi				US
7.33	T9 analogue output 1 control		17. 1	(1), AdV (2)		AdV (2)		RW	Txt				US
7.34	IGBT junction temperature		±20	O°C				RO	Bi		NC	PT	
7.35	Drive thermal protection accumulator		0 to 10	00.0 %				RO	Uni		NC	PT	
7.36	Power circuit temperature 3		-128 to	127 °C				RO	Bi		NC	PT	


RW	Read / Write	RO	Read only	Uni	Unipolar	Bi	Bi-polar	Bit	Bit parameter	Txt	Text string		
FI	Filtered	DE	Destination	NC	Not cloned	RA	Rating dependent	PT	Protected	US	User save	PS	Power down save

								-					
Safety	Product	Mechanical	Electrical	Getting	Basic	Running the	Ontimisation	Smartcard	Onboard	Advanced	Technical	Diagnostica	UL Listing
Information	Information	Installation	Installation	Started	Parameters	motor	Optimisation	operation	PLC	Parameters	Data	Diagnostics	Information

1	Safety	Product	Mechanical	Electrical	Getting	Basic	Running the	Optimisation	Smartcard	Onboard	Advanced	Technical	Diagnostics	UL Listing
	Information	Information	Installation	Installation	Started	Parameters	motor	Optimisation	operation	PLC	Parameters	Data	Diagnostics	Information

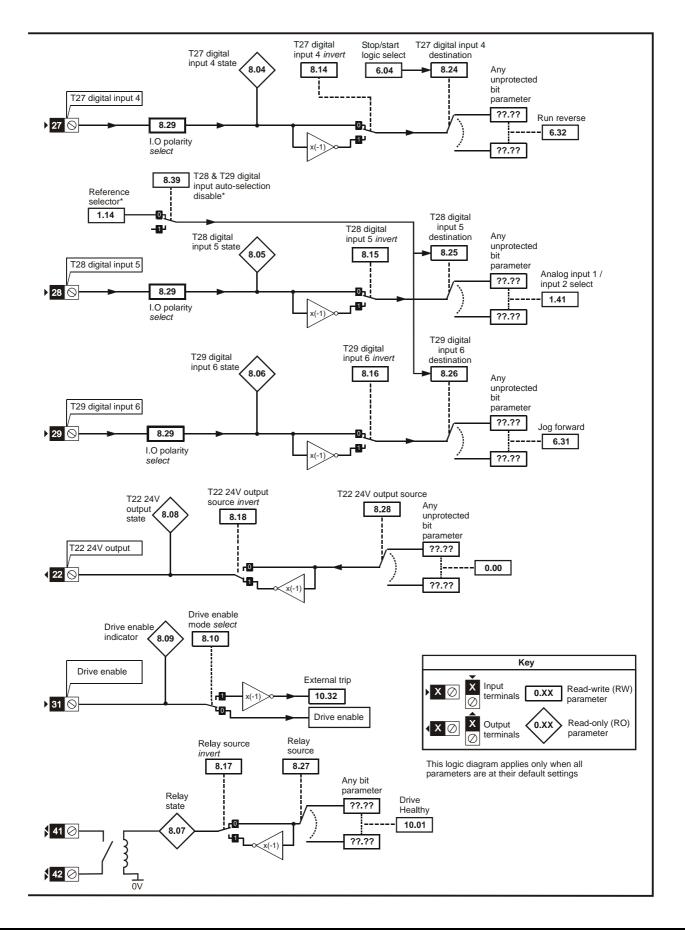

11.8 Menu 8: Digital I/O

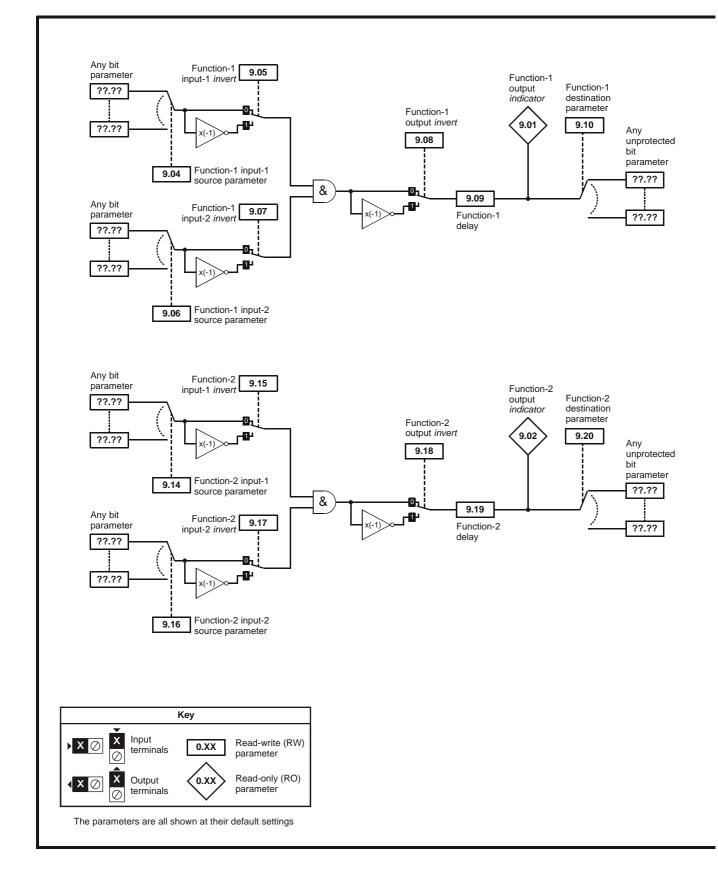
Figure 11-12 Menu 8 logic diagram

*For more information, please refer to 11.21.1 Reference modes on page 248.

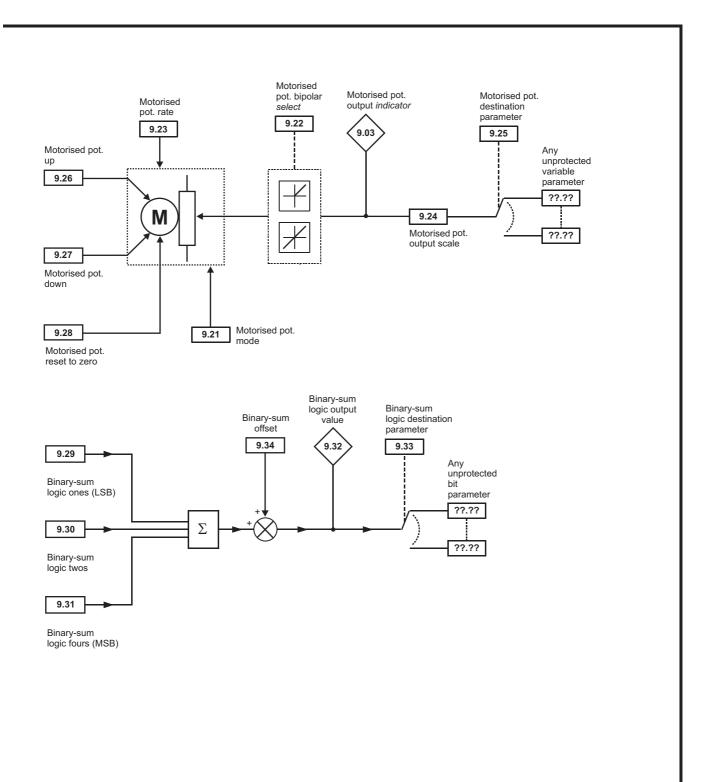
	-				-	-	-					-	
Safetv	Product	Mechanical	Electrical	Gettina	Basic	Running the	• • • •	Smartcard	Onboard	Advanced	Technical	.	UL Listing
Information	Information	Installation	Installation	Started	Parameters	motor	Optimisation	operation	PLC	Parameters	Data	Diagnostics	Information

Optimisation	Smartcard operation Onboard PLC Advanced Parameters Technical Data Diagnostics UL Listing Information
--------------	--

	Parameter	Ran	ge(‡)		Default(⇔)				ти	ре		
	rarameter	OL	CL	OL	VT	SV			ij	he		
8.01	T24 digital I/O 1 state	OFF (0)	or On (1)				RO	Bit		NC	PT	
8.02	T25 digital I/O 2 state	OFF (0)	or On (1)				RO	Bit		NC	PT	
8.03	T26 digital I/O 3 state	OFF (0)	or On (1)				RO	Bit		NC	PT	
8.04	T27 digital input 4 state	OFF (0)	or On (1)				RO	Bit		NC	PT	
8.05	T28 digital input 5 state	OFF (0)	or On (1)				RO	Bit		NC	PT	
8.06	T29 digital input 6 state	OFF (0)	or On (1)				RO	Bit		NC	PT	
8.07	Relay state	OFF (0)	or On (1)				RO	Bit		NC	PT	
8.08	T22 24V output state	OFF (0)	or On (1)				RO	Bit		NC	PT	
8.09	Drive enable indicator	OFF (0)	or On (1)				RO	Bit		NC	PT	
8.10	Drive enable mode select	OFF (0)	or On (1)		OFF (0)		RW	Bit				US
8.11	T24 digital I/O 1 invert	OFF (0)	or On (1)		OFF (0)		RW	Bit				US
8.12	T25 digital I/O 2 invert	OFF (0)	or On (1)		OFF (0)		RW	Bit				US
8.13	T26 digital I/O 3 invert	OFF (0)	or On (1)		OFF (0)		RW	Bit				US
8.14	T27 digital input 4 invert	OFF (0)	or On (1)		OFF (0)		RW	Bit				US
8.15	T28 digital input 5 invert	OFF (0)	or On (1)		OFF (0)		RW	Bit				US
8.16	T29 digital input 6 invert	OFF (0)	or On (1)		OFF (0)		RW	Bit				US
8.17	Relay source invert	OFF (0)	or On (1)		OFF (0)		RW	Bit				US
8.18	T22 24V output source invert	OFF (0)	or On (1)		On (1)		RW	Bit				US
8.20	Digital I/O read word	0 to	o 511				RO	Uni		NC	PT	
8.21	T24 digital I/O 1 source/ destination	Pr 0.00	to 21.51		Pr 10.03		RW	Uni	DE		PT	US
8.22	T25 digital I/O 2 source/ destination	Pr 0.00	to 21.51		Pr 10.33		RW	Uni	DE		PT	US
8.23	T26 digital I/O 3 source/ destination	Pr 0.00	to 21.51		Pr 6.30		RW	Uni	DE		PT	US
8.24	T27 digital input 4 destination	Pr 0.00	to 21.51		Pr 6.32		RW	Uni	DE		PT	US
8.25	T28 digital input 5 destination	Pr 0.00	to 21.51		Pr 1.41		RW	Uni			PT	US
8.26	T29 digital input 6 destination {0.17}	Pr 0.00	to 21.51		Pr 6.31		RW	Uni	DE		PT	US
8.27	Relay source	Pr 0.00	to 21.51		Pr 10.01		RW	Uni			PT	US
8.28	T22 24V output source	Pr 0.00	to 21.51		Pr 0.00		RW	Uni			PT	US
8.29	Positive logic select {0.18}	()	or On (1)		On (1)		RW	Bit			PT	US
8.30	Open collector output	OFF (0)	or On (1)		OFF (0)		RW	Bit				US
8.31	T24 digital I/O 1 output select	()	or On (1)		On (1)		RW	Bit				US
8.32	T25 digital I/O 2 output select	OFF (0)	or On (1)		OFF (0)		RW	Bit				US
8.33	T26 digital I/O 3 output select	OFF (0)	or On (1)		OFF (0)		RW	Bit				US
8.39	T28 & T29 digital input auto- selection disable {0.16}	OFF (0)	or On (1)		OFF (0)		RW	Bit				US


RW	Read / Write	RO	Read only	Uni	Unipolar	Bi	Bi-polar	Bit	Bit parameter	Txt	Text string		
FI	Filtered	DE	Destination	NC	Not cloned	RA	Rating dependent	PT	Protected	US	User save	PS	Power down save

								-					
Safety	Product	Mechanical	Electrical	Getting	Basic	Running the	Ontimisation	Smartcard	Onboard	Advanced	Technical	Diagnostica	UL Listing
Information	Information	Installation	Installation	Started	Parameters	motor	Optimisation	operation	PLC	Parameters	Data	Diagnostics	Information


1	Safety	Product	Mechanical	Electrical	Getting	Basic	Running the	Optimisation	Smartcard	Onboard	Advanced	Technical	Diagnostics	UL Listing
	Information	Information	Installation	Installation	Started	Parameters	motor	Optimisation	operation	PLC	Parameters	Data	Diagnostics	Information

11.9 Menu 9: Programmable logic, motorised pot and binary sum

Figure 11-13 Menu 9 logic diagram

Safety	Product	Mechanical	Electrical	Gettina	Basic	Running the	• • • •	Smartcard	Onboard	Advanced	Technical	D ¹	UL Listina
Information	Information	Installation	Installation	Started	Parameters	motor	Optimisation	operation	PLC	Parameters	Data	Diagnostics	Information
monnation	monnation	Installation	Installation	Slaneu	Falameters	motor		operation	FLC	Farameters	Dala		mormation

Safety Information	Product Information	Mechanical Installation	Electrical Installation	Getting Started	Basic Parameters	Running the motor	Optimisation	Smartcard operation	Onboard PLC	Advanced Parameters	Technical Data	Diagnostics	UL Listing Information

	Parameter	Ran	ige(‡)		Default(⇔)				Ту	n 0		
	Farameter	OL	CL	OL	VT	SV			чy	he		
9.01	Logic function 1 output	OFF (0) or On (1)				RO	Bit		NC	PT	
9.02	Logic function 2 output	OFF (0) or On (1)				RO	Bit		NC	ΡT	
9.03	Motorised pot output	±10	0.00 %				RO	Bi		NC	PT	PS
9.04	Logic function 1 source 1	Pr 0.0 0	D to 21.51		Pr 0.00		RW	Uni			PT	US
9.05	Logic function 1 source 1 invert	OFF (0) or On (1)		OFF (0)		RW	Bit				US
9.06	Logic function 1 source 2	Pr 0.0 0	D to 21.51		Pr 0.00		RW	Uni			PT	US
9.07	Logic function 1 source 2 invert	OFF (0) or On (1)		OFF (0)		RW	Bit				US
9.08	Logic function 1 output invert	OFF (0) or On (1)		OFF (0)		RW	Bit				US
9.09	Logic function 1 delay	±2	25.0 s		0.0		RW	Bi				US
9.10	Logic function 1 destination	Pr 0.0 0	D to 21.51		Pr 0.00		RW	Uni	DE		PT	US
9.14	Logic function 2 source 1	Pr 0.0 0	D to 21.51		Pr 0.00		RW	Uni			PT	US
9.15	Logic function 2 source 1 invert	OFF (0) or On (1)		OFF (0)		RW	Bit				US
9.16	Logic function 2 source 2	Pr 0.0 0) to 21.51		Pr 0.00		RW	Uni			PT	US
9.17	Logic function 2 source 2 invert	OFF (0) or On (1)		OFF (0)		RW	Bit				US
9.18	Logic function 2 output invert	OFF (0) or On (1)		OFF (0)		RW	Bit				US
9.19	Logic function 2 delay	±2	25.0 s		0.0		RW	Bi				US
9.20	Logic function 2 destination	Pr 0.0 0) to 21.51		Pr 0.00		RW	Uni	DE		PT	US
9.21	Motorised pot mode	0	to 3		2		RW	Uni				US
9.22	Motorised pot bipolar select	OFF (0) or On (1)		OFF (0)		RW	Bit				US
9.23	Motorised pot rate	0 to	250 s		20			Uni				US
9.24	Motorised pot scale factor	0.000	to 4.000		1.000			Uni				US
9.25	Motorised pot destination		D to 21.51		Pr 0.00				DE		PT	US
9.26	Motorised pot up	OFF (0) or On (1)		OFF (0)		RW	Bit		NC		
9.27	Motorised pot down) or On (1)		OFF (0)		RW	Bit		NC		
9.28	Motorised pot reset	OFF (0) or On (1)		OFF (0)		RW	Bit		NC		
9.29	Binary sum ones input	OFF (0) or On (1)		OFF (0)		RW	Bit		NC		
9.30	Binary sum twos input) or On (1)		OFF (0)		RW	Bit		NC		
9.31	Binary sum fours input) or On (1)		OFF (0)		RW	Bit		NC		
9.32	Binary sum output		o 255				-	Uni		NC		
9.33	Binary sum destination		D to 21.51		Pr 0.00		RW		DE		PT	
9.34	Binary sum offset	0 t	o 248		0		RW	Uni				US

RW	Read / Write	RO	Read only	Uni	Unipolar	Bi	Bi-polar	Bit	Bit parameter	Txt	Text string		
FI	Filtered	DE	Destination	NC	Not cloned	RA	Rating dependent	PT	Protected	US	User save	PS	Power down save

Safety Product Mechanical Electrical Getting Basic Running the Optimisa Information Installation Installation Installation Started Parameters Motor Optimisa	on Smartcard Onboard PLC Parameters Data Diagnostics UL Listing Information
--	---

11.10 Menu 10: Status and trips

	Demonster	Range(兌)		Default(⇔)				.		
	Parameter	OL CL	OL	VT	SV			Тур	be	
10.01	Drive healthy	OFF (0) or On (1)		<u>.</u>		RO	Bit		NC	PT
10.02	Drive active	OFF (0) or On (1)				RO	Bit		NC	PT
10.03	Zero speed	OFF (0) or On (1)				RO	Bit		NC	PT
10.04	Running at or below minimum speed	OFF (0) or On (1)				RO	Bit		NC	PT
10.05	Below set speed	OFF (0) or On (1)				RO	Bit		NC	PT
10.06	At speed	OFF (0) or On (1)				RO	Bit		NC	PT
10.07	Above set speed	OFF (0) or On (1)				RO	Bit		NC	
10.08	Load reached	OFF (0) or On (1)				RO	Bit			PT
10.09	Drive output is at current limit	OFF (0) or On (1)				RO	Bit			PT
	Regenerating	OFF (0) or On (1)				RO	Bit			PT
10.11	Braking IGBT active	OFF (0) or On (1)				RO	Bit			PT
	Braking resistor alarm	OFF (0) or On (1)				RO	Bit			PT
	Direction commanded	OFF (0) or On (1) [0 = FWD, 1 = REV]				RO	Bit			PT
10.14	Direction running	OFF (0) or On (1) [0 = FWD, 1 = REV]				RO	Bit			PT
10.15	Mains loss	OFF (0) or On (1)				RO	Bit			PT
10.16	Under voltage active	OFF (0) or On (1)				RO	Bit			PT
10.17	Overload alarm	OFF (0) or On (1)				RO	Bit		NC	
10.18	Drive over temperature alarm	OFF (0) or On (1)				RO	Bit			PT
10.19	Drive warning	OFF (0) or On (1)				RO	Bit			PT DC
10.20	Trip 0	0 to 230*				RO	Txt			PT PS
10.21	Trip 1	0 to 230* 0 to 230*				RO	Txt		NC NC	
10.22	Trip 2 Trip 3	0 to 230*				RO RO	Txt Txt		NC	
10.23	Trip 4	0 to 230*				RO	Txt		NC	
10.24	Trip 5	0 to 230*				RO	Txt		NC	
10.25	Trip 6	0 to 230*				RO	Txt		NC	
10.20	Trip 7	0 to 230*				RO	Txt		NC	
10.27	Trip 8	0 to 230*				RO	Txt		NC	
10.20	Trip 9	0 to 230*				RO	Txt		NC	
10.30	Full power braking time	0.00 to 400.00 s		See Table 11-	7	RW	Uni			US
10.31	Full power braking period	0.0 to 1500.0 s		See Table 11-		RW	Uni			US
10.32	External trip	OFF (0) or On (1)		OFF (0)	•	RW	Bit		NC	
10.33	Drive reset	OFF (0) or On (1)		OFF (0)		RW	Bit		NC	
10.34	No. of auto-reset attempts	0 to 5		0		RW	Uni			US
10.35	Auto-reset delay	0.0 to 25.0 s		1.0		RW	Uni			US
10.36	Hold drive healthy until last attempt	OFF (0) or On (1)		OFF (0)		RW	Bit			US
10.37	Action on trip detection	0 to 3		0		RW	Uni			US
10.38	User trip	0 to 255	1	0		RW	Uni		NC	
10.39	Braking energy overload accumulator	0.0 to 100.0 %				RO	Uni		NC	PT
10.40	Status word	0 to 32,767				RO	Uni		NC	PT
10.41	Trip 0 time: years.days	0.000 to 9.365 years.days					Uni			PT PS
10.42	Module number for trip 0, or, Trip 0 time: hours.minutes	00.00 to 23.59 hours minutes				RO	Uni		NC	PT PS
10.43	Module number for trip 1, or, Trip 1 time	0 to 600.00 hours.minutes				RO	Uni	1	NC	PT PS
10.44	Module number for trip 2, or, Trip 2 time	0 to 600.00 hours.minutes				RO	Uni			PT PS
10.45	Module number for trip 3, or, Trip 3 time	0 to 600.00 hours.minutes				RO	Uni			PT PS
10.46	Module number for trip 4, or, Trip 4 time	0 to 600.00 hours.minutes				RO	Uni		NC	PT PS
10.47	Module number for trip 5, or, Trip 5 time	0 to 600.00 hours.minutes				RO	Uni		NC	PT PS
10.48	Module number for trip 6, or, Trip 6 time	0 to 600.00 hours.minutes				RO	Uni			PT PS
10.49	Module number for trip 7, or, Trip 7 time	0 to 600.00 hours.minutes				RO	Uni		NC	PT PS
10.50	Module number for trip 8, or, Trip 8 time	0 to 600.00 hours.minutes					Uni			PT PS
10.51	Module number for trip 9, or, Trip 9 time	0 to 600.00 hours.minutes				RO	Uni		NC	PT PS

RW	Read / Write	RO	Read only	Uni	Unipolar	Bi	Bi-polar	Bit	Bit parameter	Txt	Text string		
FI	Filtered	DE	Destination	NC	Not cloned	RA	Rating dependent	PT	Protected	US	User save	PS	Power down save

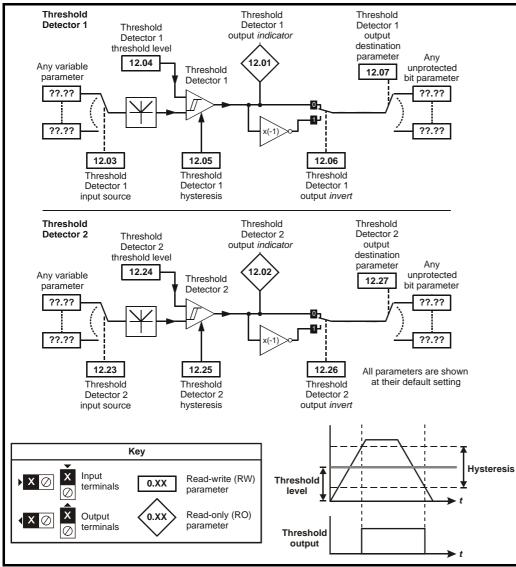
*The value given for the range is that obtained via serial communication. For the text string displayed on the drive, see Chapter 13 *Diagnostics* on page 275.

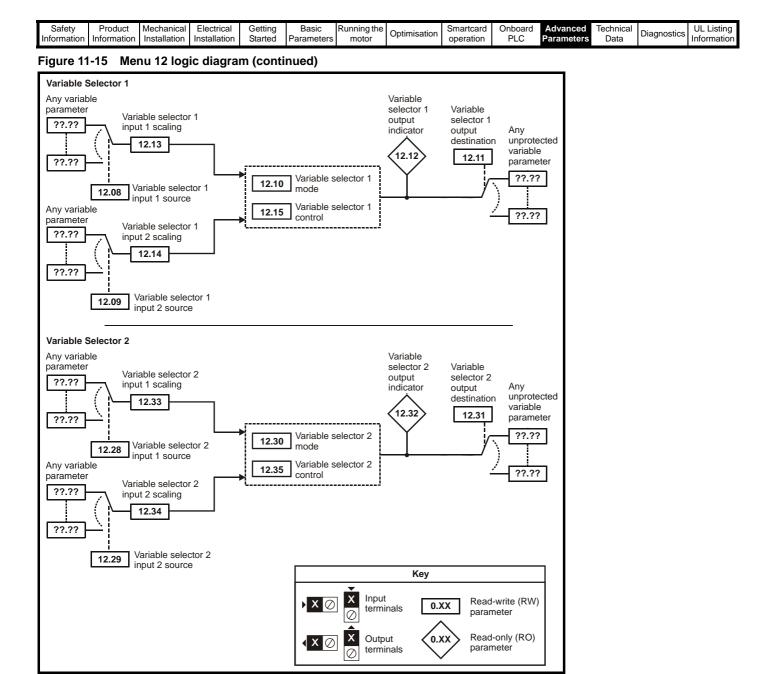
Table 11-7 Defaults for Pr 10.30 and Pr 10.31

Drive rating	Pr 10.30	Pr 10.31
200V, size 1 & 2	0.04	2.0
400V, size 1 & 2	0.02	2.0
All other ratings and frame sizes	0.	00

Safety Information Ir	Product Information	Mechanical Installation	Electrical Installation	Getting Started	Basic Parameters	Running the motor	Optimisation	Smartcard operation	Onboard PLC	Advanced Parameters	Technical Data	Diagnostics	UL Listing Information
--------------------------	------------------------	----------------------------	----------------------------	--------------------	---------------------	-------------------	--------------	---------------------	----------------	------------------------	-------------------	-------------	---------------------------

11.11 Menu 11: General drive set-up


	Deremeter		Ran	ge(\$)		Default(⇔)				Tran	_		
	Parameter		OL	CL	OL	VT	SV			Тур	e		
11.01	Parameter 0.11 set up		Pr 1.00	to 21.51	Pr 5	5.01	Pr 3.29	RW	Uni			PT	US
11.02	Parameter 0.12 set up		Pr 1.00	to 21.51		Pr 4.01	•	RW	Uni				US
11.03	Parameter 0.13 set up			to 21.51	Pr 4	1.02	Pr 7.07	RW	Uni				US
11.04	Parameter 0.14 set up			to 21.51		Pr 4.11			Uni				US
11.05	Parameter 0.15 set up			to 21.51		Pr 2.04		RW	Uni				US
11.06	Parameter 0.16 set up			to 21.51	Pr 8.39		2.02	RW	Uni				US
11.07	Parameter 0.17 set up			to 21.51	Pr 8.26		4.12	RW	Uni				US
11.08	Parameter 0.18 set up			to 21.51		Pr 8.29		RW	Uni	\rightarrow			US
11.09	Parameter 0.19 set up			to 21.51		Pr 7.11		RW	Uni				US
11.10	Parameter 0.20 set up			to 21.51		Pr 7.14		RW RW	Uni				US US
11.11 11.12	Parameter 0.21 set up			to 21.51		Pr 7.15 Pr 1.10	RW	Uni Uni				US	
11.12	Parameter 0.22 set up Parameter 0.23 set up			to 21.51		RW	Uni	\rightarrow			US		
	Parameter 0.23 set up			to 21.51		Pr 1.05 Pr 1.21		RW	Uni	—			US
	Parameter 0.25 set up			to 21.51	-	Pr 1.22		RW	Uni	\rightarrow			US
	Parameter 0.26 set up			to 21.51	Pr 1.23		3.08	RW	Uni	_			US
11.10	Parameter 0.27 set up			to 21.51	Pr 1.23		3.34	RW	Uni	\rightarrow			US
11.18	Parameter 0.28 set up			to 21.51		Pr 6.13		RW	Uni	\rightarrow			US
11.19	Parameter 0.29 set up			to 21.51		Pr 11.36		RW	Uni	-			US
11.20	Parameter 0.30 set up			to 21.51		Pr 11.42		RW	Uni	_	1		US
11.21	Parameter scaling			to 9.999		1.000		RW	Uni	+			US
11.22	Parameter displayed at power-	up	Pr 0.00	to 00.50		Pr 0.10		RW	Uni		1	PT	US
11.23	Serial address	{0.37 }	0 to	247		1		RW	Uni	-			US
11.24	Serial mode	{0.35}	AnSI (0), rt	U (1), Lcd (2)		rtU (1)		RW	Txt		1	PT	US
11.25	Baud rate	{0.36 }	9600 (5), 1920	(2), 2400 (3), 4800 (4), 0 (6), 38400 (7),		19200 (6)		RW	Txt				US
11.26	Minimum comms transmit delay	v		9)* *Modbus RTU only 250ms		2		RW	Uni	_			US
11.28	Drive derivative	у		o 16		2			Uni		NC I		00
11.29		{0.50 }		o 99.99				RO	Uni		NC I		
11.30		{0.34}		0 999		0		RW	Uni			PT	PS
11.31		{ 0.48 }	OPEn LP (1)	, CL VECt (2), , rEGEn (4)	OPEn LP (1)	CL VECt (2)	SErVO (3)	RW	-		NC I		
11.32	Maximum Heavy Duty current rating	{0.32 }		9999.99A		1	1	RO	Uni			РТ	_
11.33	rating	{0.31}	200 (0) 400 (1)	, 575 (2), 690 (3)				RO	Txt		NC I	РТ	
11.33	Software sub-version	{0.31}		0 99				RO	Uni			PT	
11.34	Number of modules			o 10				RO	Uni			PT	
	SMARTCARD parameter							-					
11.36	data previously loaded	{0.29 }		999		0		RO	Uni			PT	US
11.37	SMARTCARD data number	-		1000		0		RW	Uni		NC	пт	
11.38	SMARTCARD data type / mode	e		o 18		0		RO	Txt			PT	_
11.39	SMARTCARD data version			9,999		0		RW	Uni Uni			БТ	
11.40 11.41	SMARTCARD data checksum Status mode timeout			65,335 250s		240			Uni	-+			US
11.41		{0.30 }	nonE (0), rEAd (1)	, Prog (2), AutO (3),		nonE (0)			Txt	1	NC		*
11.43	Load defaults			ot (4) ır (1), USA (2)		nonE (0)		RW	Tv+		NC	\rightarrow	
11.43		{0.49 }		(1), Loc (2)					Txt	-+	-	PT	US
11.44	Select motor 2 parameters	נ י.+ ש}		or On (1)		OFF (0)			Bit	\rightarrow			US
11.45	Defaults previously loaded		,	2000				RO			NC I		US
11.47	Drive Onboard PLC program er	nable	Halt pro Run program: ou	bgram (0) t of range = clip (1) t of range = trip (2)	Run progra	am: out of rang	ge = trip (2)	RW					US
11.48	Drive Onboard PLC program st	tatus		to +127				RO	Bi		NC I	PT	
	Drive Onboard PLC programmi										-		
11.49	events Drive Onboard PLC program	3		65,535					Uni			_	PS
11.50									1 Ini	11	NC I	PTL	
11.50	maximum scan time Drive Onboard PLC program fir	ret rup		i,535 ms or On (1)				RO RO					_


 * Modes 1 and 2 are not user saved, Modes 0, 3 and 4 are user saved

RW	Read / Write	RO	Read only	Uni	Unipolar	Bi	Bi-polar	Bit	Bit parameter	Txt	Text string		
FI	Filtered	DE	Destination	NC	Not cloned	RA	Rating dependent	PT	Protected	US	User save	PS	Power down save

	Safety Information	Product Information	Mechanical Installation	Electrical Installation	Getting Started	Basic Parameters	Running the motor	Optimisation	Smartcard operation	Onboard PLC	Advanced Parameters	Technical Data	Diagnostics	UL Listing Information
--	-----------------------	------------------------	----------------------------	----------------------------	--------------------	---------------------	----------------------	--------------	---------------------	----------------	------------------------	-------------------	-------------	---------------------------

11.12 Menu 12: Threshold detectors, variable selectors and brake control function Figure 11-14 Menu 12 logic diagram

Safety Information Product Information Mechanical Installation Electrical Installation Getting Started Basic Parameters Running the motor Optimisation Smartcard operation Onboar PLC	Advanced Technical Parameters Data	Diagnostics UL Listing Information
--	------------------------------------	---------------------------------------

The control terminal relay can be selected as an output to release a brake. If a drive is set up in this manner and a drive replacement takes place, prior to programming the drive on initial power up, the brake may be released.

When drive terminals are programmed to non default settings the result of incorrect or delayed programming must be considered. The use of a Smartcard in boot mode or an SM-Applications module can ensure drive parameters are immediately programmed to avoid this situation.

Figure 11-16 Open-loop brake function

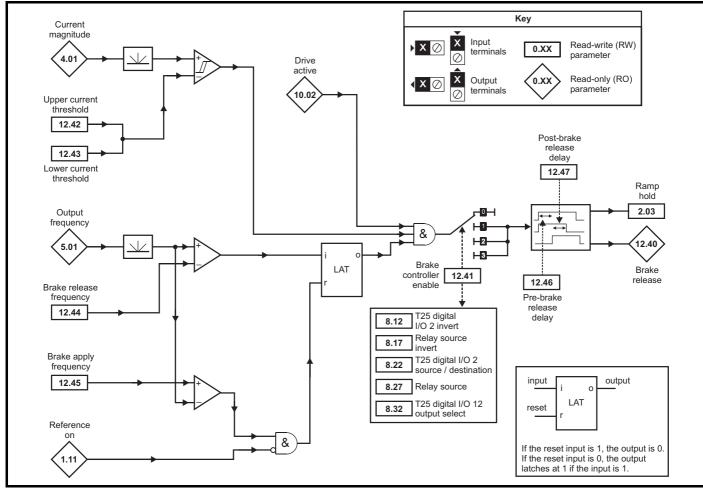
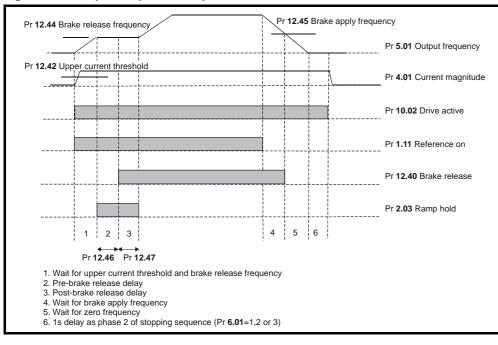



Figure 11-17 Open-loop brake sequence

Safety InformationProduct MechanicalMechanical Electrical InstallationElectrical StartedGetting StartedBasic ParametersRunning the motorOptimisationSmartcard operationOnboard PLCAdvanced Parameters	Technical Data	Diagnostics UL Info	Listing
--	-------------------	------------------------	---------

The control terminal relay can be selected as an output to release a brake. If a drive is set up in this manner and a drive replacement takes place, prior to programming the drive on initial power up, the brake may be released.

When drive terminals are programmed to non default settings the result of incorrect or delayed programming must be considered. The use of WARNING a Smartcard in boot mode or an SM-Applications module can ensure drive parameters are immediately programmed to avoid this situation.

Figure 11-18 Closed-loop brake function

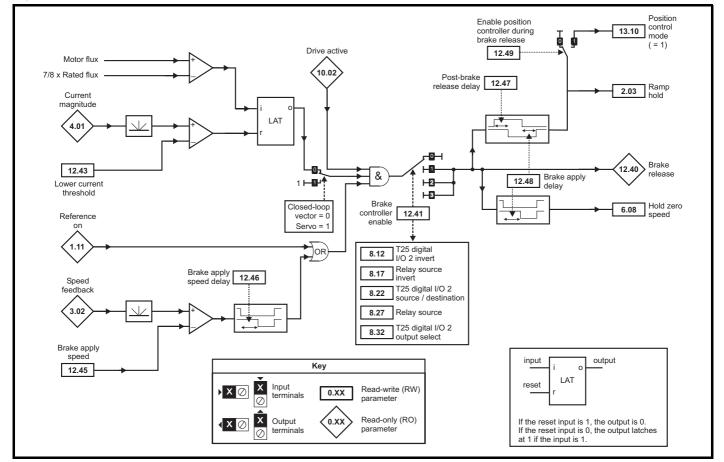
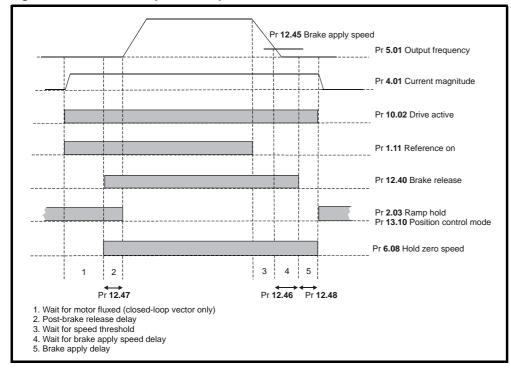
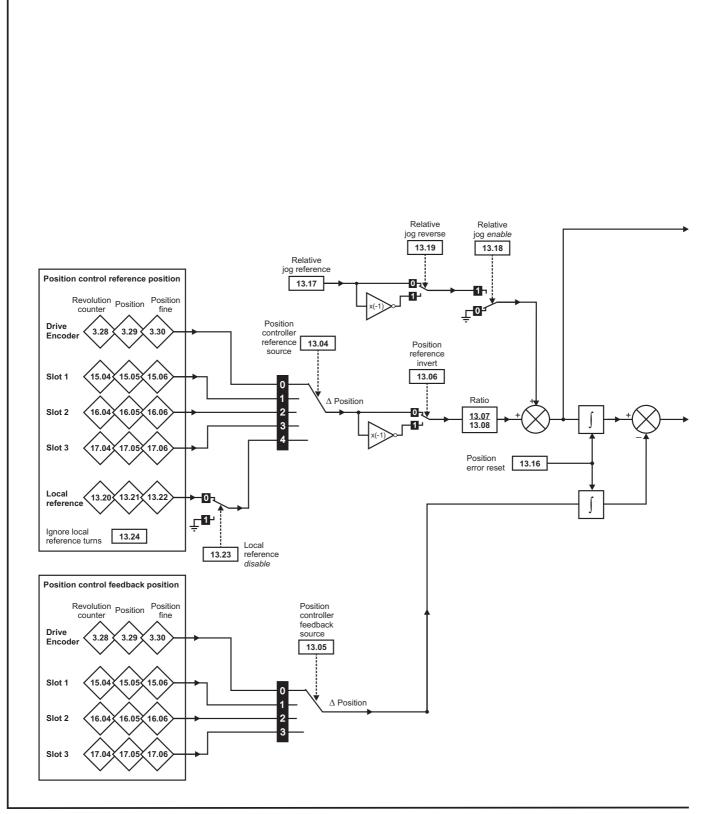



Figure 11-19 Closed-loop brake sequence

Safety Information Product Information Mechanical Installation Electrical Installation Getting Started Basic Parameters Running the motor Optimisation	Smartcard operation Onboard PLC Advanced Parameters Technical Data Diagnostics UL Listing Information
---	--

The control terminal relay can be selected as an output to release a brake. If a drive is set up in this manner and a drive replacement takes place, prior to programming the drive on initial power up, the brake may be released.

When drive terminals are programmed to non default settings the result of incorrect or delayed programming must be considered. The use of warning a Smartcard in boot mode or an SM-Applications module can ensure drive parameters are immediately programmed to avoid this situation.


	Denemeter	Range(Ĵ) Default(⇒) Type OL CL OL VT SV tector 1 output OFF (0) or On (1) RO Bit NC PT											
	Parameter	OL		CL	OL	VT	SV		_	. iy	pe		
	Threshold detector 1 output			,									
12.02	Threshold detector 2 output) or On ('	,				RO	Bit		NC		
12.03	Threshold detector 1 source) to 21.5			Pr 0.00		RW	Uni			PT	
12.04	Threshold detector 1 level	0.00 to	100.00 %	/o		0.00		RW	Uni				US
12.05	Threshold detector 1 hysteresis	0.00 to	25.00 %			0.00		RW	Uni				US
12.06	Threshold detector 1 output invert	OFF (0)) or On (′	1)		OFF (0)		RW	Bit				US
12.07	Threshold detector 1 destination	Pr 0.00) to 21.5°	I		Pr 0.00		RW	Uni	DE		PT	US
12.08	Variable selector 1 source 1	Pr 0.00) to 21.5			Pr 0.00		RW	Uni			PT	US
12.09	Variable selector 1 source 2) to 21.5			Pr 0.00		RW	Uni			PT	US
12.10	Variable selector 1 mode	Select input 1 (0), sel subtract (3), mul time constant (6), linea powers (9), sec external rectil	tiply (4), ar ramp (tional co	divide (5), 7), modulus (8), ntrol (10),	:	Select input 1	(0)	RW	Uni				US
12.11	Variable selector 1 destination	Pr 0.00) to 21.5			Pr 0.00		RW	Uni	DE		PT	US
12.12	Variable selector 1 output	±100	0.00 %					RO	Bi	1	NC	PT	
12.13	Variable selector 1 source 1 scaling	±4	.000			1.000		RW	Bi				US
12.14	Variable selector 1 source 2 scaling	±4	.000			1.000		RW	Bi				US
12.15	Variable selector 1 control	0.00 to	100.00	6		0.00		RW	Uni				US
12.23	Threshold detector 2 source	Pr 0.00) to 21.5			Pr 0.00		RW	Uni			PT	US
12.24	Threshold detector 2 level	0.00 to	100.00 %	6		0.00		RW	Uni				US
12.25	Threshold detector 2 hysteresis	0.00 to	25.00 %			0.00		RW	Uni				US
12.26	Threshold detector 2 output invert	OFF (0)) or On (′	1)		OFF (0)		RW	Bit				US
12.27	Threshold detector 2 destination	Pr 0.00) to 21.5°	I		Pr 0.00		RW	Uni	DE		PT	US
12.28	Variable selector 2 source 1	Pr 0.00) to 21.5			Pr 0.00		RW	Uni			PT	US
12.29	Variable selector 2 source 2	Pr 0.00) to 21.5			Pr 0.00		RW	Uni			PT	US
12.30	Variable selector 2 mode	Select input 1 (0), sel subtract (3), mul time constant (6), linea powers (9), sec external rectil	tiply (4), ar ramp (tional co	divide (5), 7), modulus (8), ntrol (10),		Select input 1	(0)	RW	Uni				US
12.31	Variable selector 2 destination	Pr 0.00) to 21.5	I		Pr 0.00		RW	Uni	DE		PT	US
12.32	Variable selector 2 output	±100	0.00 %					RO	Bi	L	NC	PT	
12.33	Variable selector 2 source 1 scaling	±4	.000			1.000		RW	Bi				US
12.34	Variable selector 2 source 2 scaling	±4	1.000			1.000		RW	Bi				US
12.35	Variable selector 2 control	0.00 to	100.00	3		0.00		RW	Uni	1			US
12.40	Brake release indicator	OFF (0)) or On ()				RO	Bit	1	NC	PT	
12.41	Brake controller enable	dis (0), rEL (1),	d IO (2),	USEr (3)		dis (0)		RW	Txt	1			US
12.42	Upper current threshold	0 to 200 %			50			RW	Uni	1			US
12.43	Lower current threshold	0 to	200 %			10		RW	Uni	1	1		US
12.44	Brake release frequency	0.0 to 20.0 Hz			1.0			RW	Uni	Ì			US
12.45	Brake apply frequency / speed	0.0 to 20.0 Hz	0	to 200 rpm	2.0		5	RW	Bit	1	1		US
40.40	OL> Pre-brake release delay	0.0.1							11-2	1			
12.46	CL> Brake apply speed delay	0.0 to	o 25.0 s			1.0		RVV	Uni	1			US
12.47	Post brake release delay	0.0 to	25.0 s			1.0		RW	Uni	1	1		US
12.48	Brake apply delay		0.	0 to 25.0 s		· ·	1.0	RW	Uni	1			US
12.49	Enable position controller during brake release		OFF	(0) or On (1)		OF	F (0)	RW	Bit				US

RW	Read / Write	RO	Read only	Uni	Unipolar	Bi	Bi-polar	Bit	Bit parameter	Txt	Text string		
FI	Filtered	DE	Destination	NC	Not cloned	RA	Rating dependent	PT	Protected	US	User save	PS	Power down save

Safety	Product	Mechanical	Electrical	Getting	Basic	Running the	Optimisation	Smartcard	Onboard	Advanced	Technical	Diagnostics	UL Listing
Informati	on Information	Installation	Installation	Started	Parameters	motor	Optimisation	operation	PLC	Parameters	Data	Diagnostics	Information

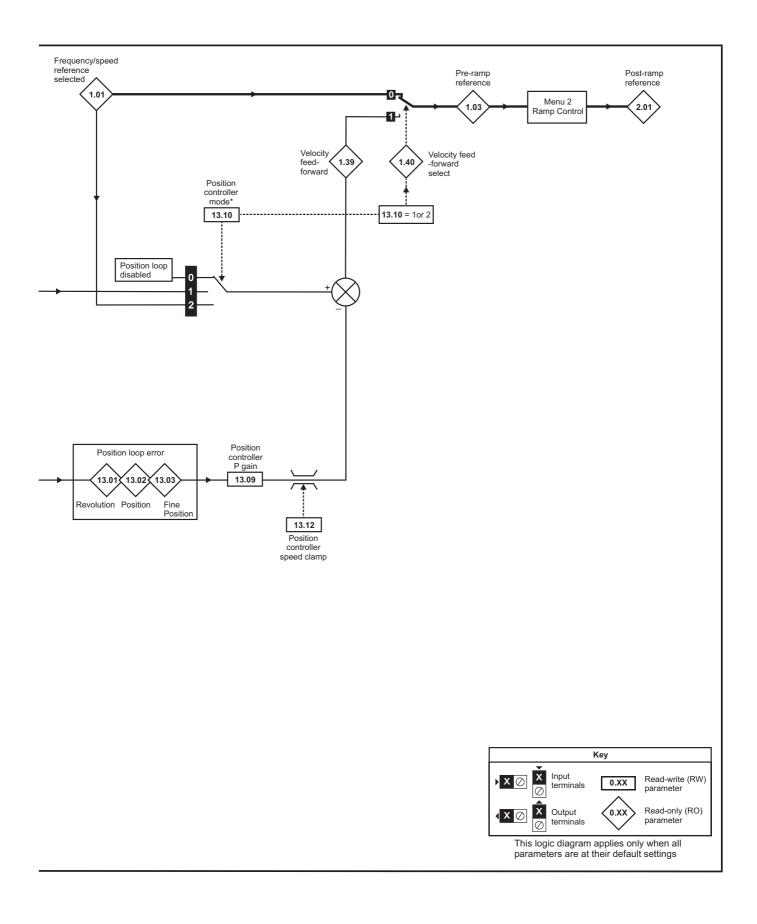
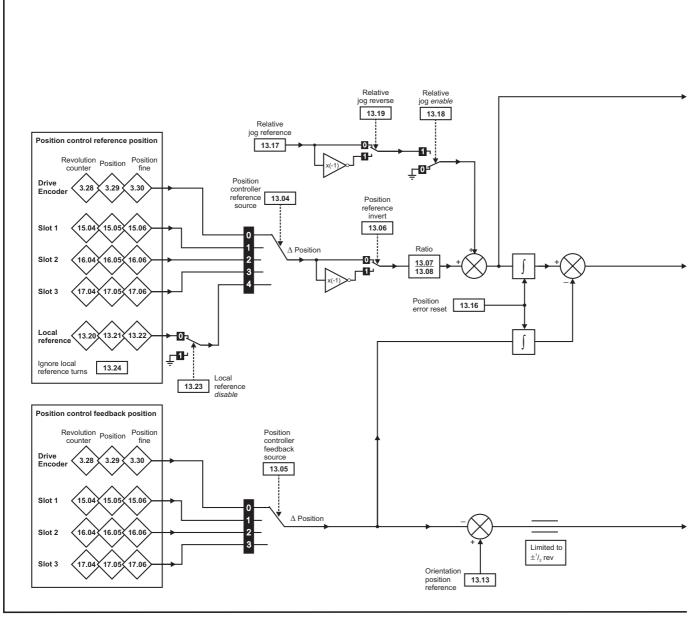

11.13 Menu 13: Position control

Figure 11-20 Menu 13 Open-loop logic diagram


^{*}For more information, refer to section 11.21.9 Position modes on page 255.

Safety Information	Product Information	Mechanical Installation	Electrical Installation	Getting Started	Basic Parameters	Running the motor	Optimisation	Smartcard operation	Onboard PLC	Advanced Parameters	Technical Data	Diagnostics	UL Listing Information

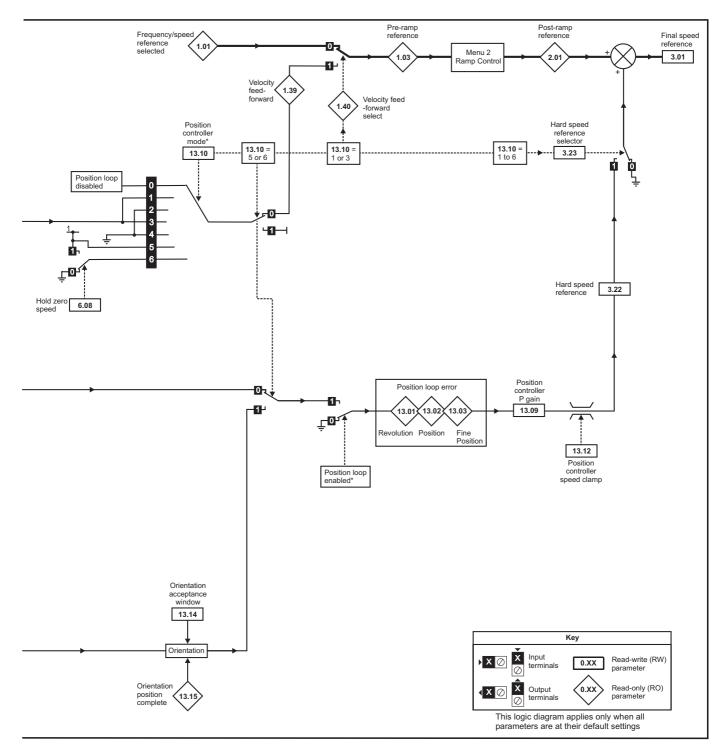

Salety Floudet Mechanical Electrical Getting Basic Running the Ontimisation Sinal Card Choose Provide Revenues	Technical Data D		Diagnostics	UL Listing Information
--	---------------------	--	-------------	---------------------------

Figure 11-21 Menu 13 Closed-loop logic diagram

*For more information, refer to section 11.21.9 Position modes on page 255.

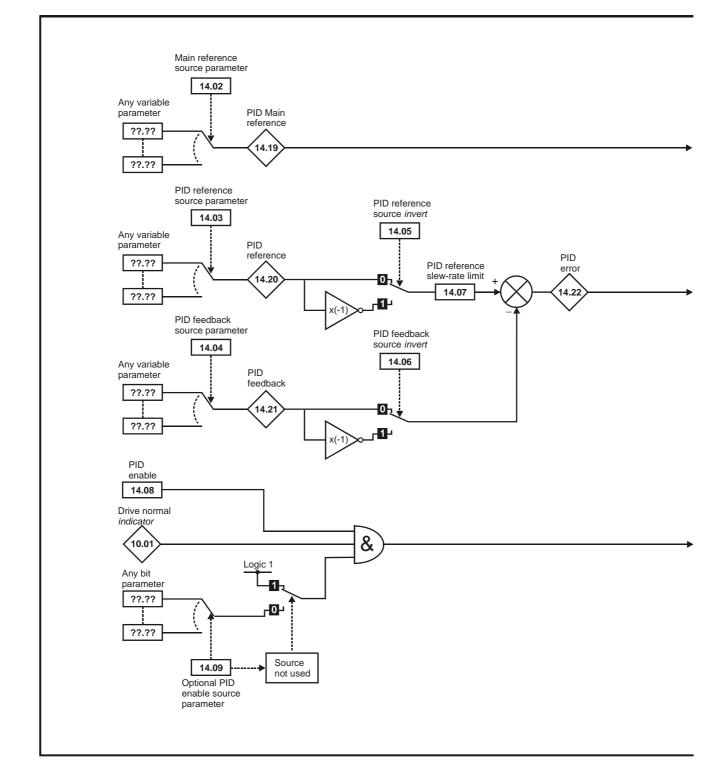
													·,
Safety	Product	Mechanical	Electrical	Getting	Basic	Running the	0.0.0	Smartcard	Onboard	Advanced	Technical	D'	UL Listing
Information	Information	Installation	Installation	Started	Parameters	motor	Optimisation	operation	PLC	Parameters	Data	Diagnostics	Information
								•					

* The position controller is disabled and the error integrator is also reset under the following conditions:

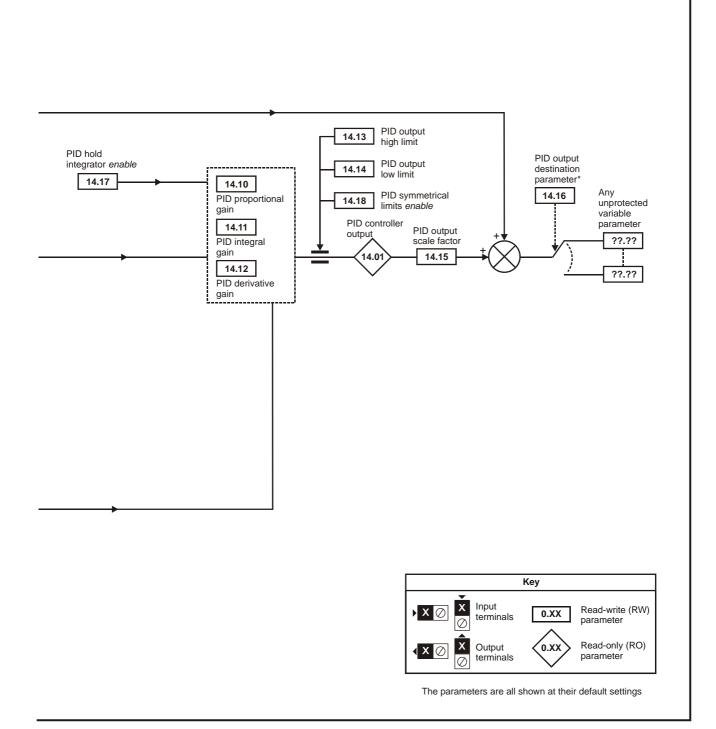
- 1. If the drive is disabled (i.e. inhibited, ready or tripped)
- 2. If the position controller mode (Pr **13.10**) is changed. The position controller is disabled transiently to reset the error integrator.
- 3. The absolute mode parameter (Pr **13.11**) is changed. The position controller is disabled transiently to reset the error integrator.
- 4. One of the position sources is invalid.
- 5. The position feedback initialised parameter (Pr 3.48) is zero.

Safe Informa	 Product Information	Mechanical Installation	Electrical Installation	Getting Started	Basic Parameters	Running the motor	Optimisation	Smartcard operation	Onboard PLC	Advanced Parameters	Technical Data	Diagnostics	UL Listing Information

	Parameter	Ran	ge(①)	C	Default(≓)			Тур	•	
	raidilleter	OL	CL	OL	VT	SV			iyp	C	
13.01	Revolutions error	-32,768	to +32,767				RO	Bi	١	NC	PT
13.02	Position error	-32,768	to +32,767				RO	Uni	١	NC	PT
13.03	Fine position error	-32,768	to +32,767				RO	Uni	١	NC	PT
13.04	Position controller reference source		Slot2 (2), Slot3 (3), AL (4)		drv (0)		RW	Uni			US
13.05	Position controller feedback source	drv (0), Slot1 (1)	Slot2 (2), Slot3 (3)		drv (0)		RW	Uni			US
13.06	Position reference invert	OFF (0)) or On (1)		OFF (0)		RW	Bit			US
13.07	Ratio numerator	0.000	to 4.000		1.000		RW	Uni			US
13.08	Ratio denominator	0.000	to 1.000		1.000		RW	Uni			US
13.09	Position controller P gain	0.00 to 100	.00 rad s ⁻¹ / _{rad}		25.00		RW	Uni			US
13.10	Position controller mode	Position controller disabled (0) Rigid position control - feed fwd (1) Rigid position control (2)	Position controller disabled (0) Rigid position control - feed fwd (1) Rigid position control (2) Non-rigid position control - feed fwd (3) Non-rigid position control (4) Orientation on stop (5) Orientation on stop and when drive enabled (6)	Position c	ontroller di	sabled (0)	RW	Uni			US
13.11	Absolute mode enable	OFF (0)	or On (1)		OFF (0)		RW	Bit			US
13.12	Position controller speed clamp	0 t	o 250		150		RW	Uni			US
13.13	Orientation position reference		0 to 65,535		(0	RW	Uni			US
13.14			0 to 4,096		2	56	RW	Uni			US
13.15	Orientation position complete		OFF (0) or On (1)				RO	Bit	١	NC	PT
13.16	Position error reset	OFF (0)	or On (1)		OFF (0)		RW	Bit	١	٧C	
13.17	Relative jog reference	0.0 to 4	.000.0 rpm		0.0		RW	Uni	١	NC	
13.18	Relative jog enable	OFF (0)) or On (1)		OFF (0)		RW	Bit	١	٧C	
13.19	Relative jog reverse	OFF (0)) or On (1)		OFF (0)		RW	Bit	١	٧C	
13.20	Local reference turns	0 to	65,535		0		RW	Uni	١	٧C	
13.21	Local reference position	0 to	65,535		0		RW	Uni	١	NC	
13.22	Local reference fine position	0 to	65,535		0		RW	Uni	١	NC	
13.23	Local reference disable	OFF (0)) or On (1)		OFF (0)		RW	Bit	١	١C	
13.24	Ignore local reference turns	OFF (0)) or On (1)		OFF (0)		RW	Bit			US


RW	Read / Write	RO	Read only	Uni	Unipolar	Bi	Bi-polar	Bit	Bit parameter	Txt	Text string		
FI	Filtered	DE	Destination	NC	Not cloned	RA	Rating dependent	PT	Protected	US	User save	PS	Power down save

Safety	Product	Mechanical	Electrical	Getting	Basic	Running the	Ontimisation	Smartcard	Onboard	Advanced	Technical	Diagnostica	UL Listing
Information	Information	Installation	Installation	Started	Parameters	motor	Optimisation	operation	PLC	Parameters	Data	Diagnostics	Information


Safety	Product	Mechanical	Electrical	Getting		Running the	Optimisation	Smartcard	Onboard	Advanced	Technical	Diagnostics	UL Listing
Information	Information	Installation	Installation	Started	Parameters	motor	•	operation	PLC	Parameters	Data	Ũ	Information

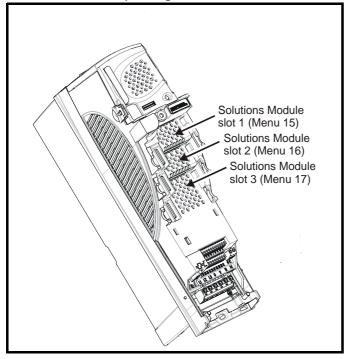
11.14 Menu 14: User PID controller

Figure 11-22 Menu 14 Logic diagram

Safety Information	Product Information	Mechanical Installation	Electrical Installation	Getting Started	Basic Parameters	Running the motor	Optimisation	Smartcard operation	Onboard	Advanced Parameters	Technical Data	Diagnostics	UL Listing Information
mormation	mormation	Installation	Installation	Stanted	Parameters	motor	-	operation	PLC	Parameters	Dala	-	mormation

*The PID controller is only enabled if Pr **14.16** is set to a non Pr **xx.00** and unprotected destination parameter.

Safety Information Product Information Mechanical Installation Electrical Installation Getting Started Basic Parameters Running the motor Optimisal	ion Smartcard Onboard PLC Parameters Data Diagnostics UL Listing Information
--	--


	Parameter	Ran	ge(‡)		Default(⇔))			ти	ре		
	T arameter	OL	CL	OL	VT	SV			ij	pe		
14.01	PID control output	±100	.00 %				RO	Bi		NC I	PT	
14.02	PID main reference source	Pr 0.00	to 21.51		Pr 0.00		RW	Uni		1	PT L	JS
14.03	PID reference source	Pr 0.00	to 21.51		Pr 0.00		RW	Uni		1	PT L	JS
14.04	PID feedback source	Pr 0.00	to 21.51		Pr 0.00		RW	Uni		1	PT L	JS
14.05	PID reference source invert	OFF (0)	or On (1)		OFF (0)		RW	Bit			ι	US
14.06	PID feedback source invert	OFF (0)	or On (1)		OFF (0)		RW	Bit			ι	US
14.07	PID reference slew-rate limit	0.0 to 3	3,200.0 s		0.0		RW	Uni			ι	JS
14.08	PID enable	OFF (0)	or On (1)		OFF (0)		RW	Bit			ι	US
14.09	PID optional enable source	Pr 0.00	to 21.51		Pr 0.00		RW	Uni		1	PT L	US
14.10	PID proportional gain	0.000	to 4.000		1.000		RW	Uni			ι	US
14.11	PID integral gain	0.000	to 4.000		0.500		RW	Uni			ι	US
14.12	PID derivative gain	0.000	to 4.000		0.000		RW	Uni			ι	US
14.13	PID upper limit	0.00 to	100.00 %		100.00		RW	Uni			ι	JS
14.14	PID lower limit	±100	0.00 %		-100.00		RW	Bi			ι	US
14.15	PID output scaling factor	0.000	to 4.000		1.000		RW	Uni			ι	US
14.16	PID output destination	Pr 0.00	to 21.51		Pr 0.00		RW	Uni	DE	1	PT L	JS
14.17	PID hold integrator enable	OFF (0)	or On (1)		OFF (0)		RW	Bit		NC		
14.18	PID symmetrical limits enable	OFF (0)	or On (1)		OFF (0)		RW	Bit			ι	JS
14.19	PID main reference	±100	0.00 %				RO	Bi		NC I	PT	
14.20	PID reference	±100	0.00 %				RO	Bi		NC I	PT	
14.21	PID feedback	±100	0.00 %				RO	Bi	1	NC I	PT	
14.22	PID error	±100	0.00 %				RO	Bi		NC I	PT	

RW	Read / Write	RO	Read only	Uni	Unipolar	Bi	Bi-polar	Bit	Bit parameter	Txt	Text string		
FI	Filtered	DE	Destination	NC	Not cloned	RA	Rating dependent	PT	Protected	US	User save	PS	Power down save

Safety	Product	Mechanical	Electrical	Getting	Basic	Running the	Optimisation	Smartcard	Onboard	Advanced	Technical	Diagnostics	UL Listing
Information	Information	Installation	Installation	Started	Parameters	motor	Optimisation	operation	PLC	Parameters	Data	Diagnostics	Information

11.15 Menus 15, 16 and 17: Solutions Module set-up

Figure 11-23 Location of Solutions Module slots and their corresponding menu numbers

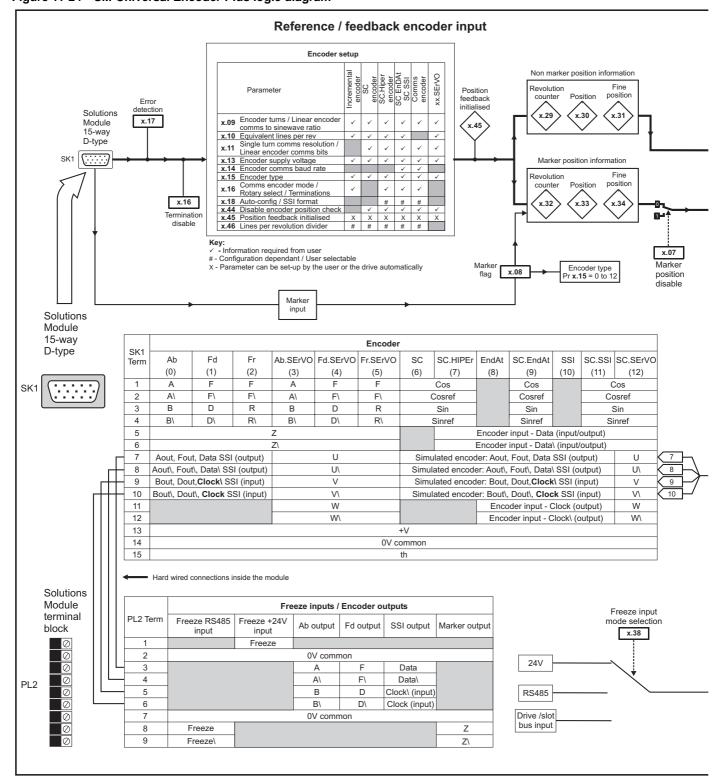
11.15.1 Parameters common to all categories

	Parameter	Ran	ge(‡)		Default(⇔)				Тур	he		
	i diameter	OL	CL	OL	VT	SV						
x.01	Solutions Module ID	0 te	o 599				RO	Uni			PT	US
x.02	Solutions Module software version	0.00 1	o 99.99				RO	Uni		NC	PT	
x.50	Solutions Module error status	0 te	o 255				RO	Uni		NC	PT	
x.51	Solutions Module software sub-version	0 to 99					RO	Uni		NC	PT	

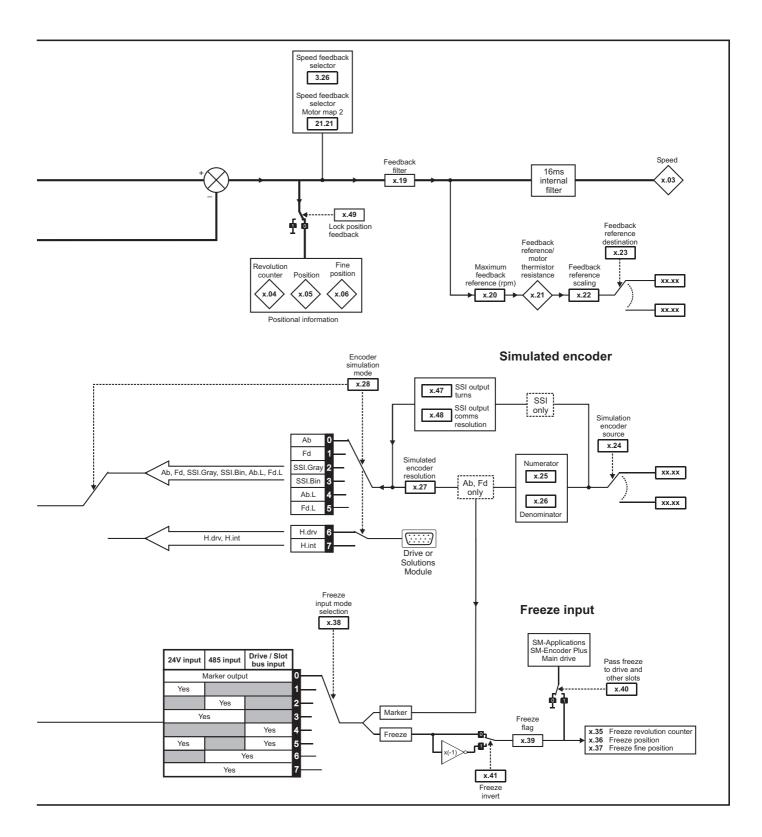
The Solutions Module ID indicates the type of module that is fitted in the corresponding slot.

Solutions Module ID	Module	Category
0	No module fitted	
101	SM-Resolver	
102	SM-Universal Encoder Plus	Feedback
104	SM-Encoder Plus	
201	SM-I/O Plus	
203	SM-I/O Timer	
204	SM-PELV	
206	SM-I/O 120V	Automation
207	SM-I/O Lite	Automation
301	SM-Applications	
302	SM-Applications Lite	
303	SM-EZMotion	
403	SM-PROFIBUS-DP	
404	SM-Interbus	
406	SM-CAN	
407	SM-DeviceNet	Fieldbus
408	SM-CANopen	
409	SM-SERCOS	
410	SM-Ethernet	
501	SM-SLM	SLM

Solutions Module software


Most Solutions Modules contain software. The software version of the module can be checked by looking at Pr **xx.02** and Pr **xx.51**.

The software version takes the form of zz.yy.xx, where Pr **xx.02** displays zz.yy and Pr **xx.51** displays xx. I.e. for software version 01.01.00, Pr **xx.02** would display 1.01 and Pr **xx.51** would display 0


The SM-Resolver, SM-Encoder Plus and SM-I/O Plus modules do not contain any software, so Pr **xx.02** and Pr **xx.51** either show 0 (software V01.07.01 and earlier) or the parameters do not appear (software V01.08.00 and later).

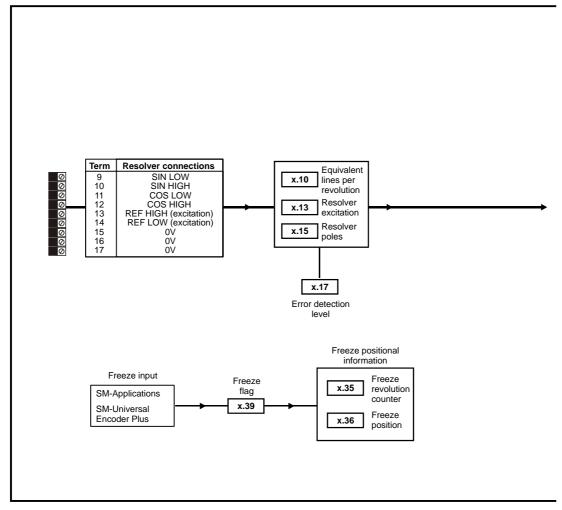
	Safety formation	Product Information	Mechanical Installation	Electrical Installation	Getting Started	Basic Parameters	Running the motor	Optimisation	Smartcard operation	Onboard PLC	Advanced Parameters	Technical Data	Diagnostics	UL Listing Information
--	---------------------	------------------------	----------------------------	----------------------------	--------------------	---------------------	----------------------	--------------	---------------------	----------------	------------------------	-------------------	-------------	---------------------------

11.15.2 Feedback module category Figure 11-24 SM-Universal Encoder Plus logic diagram

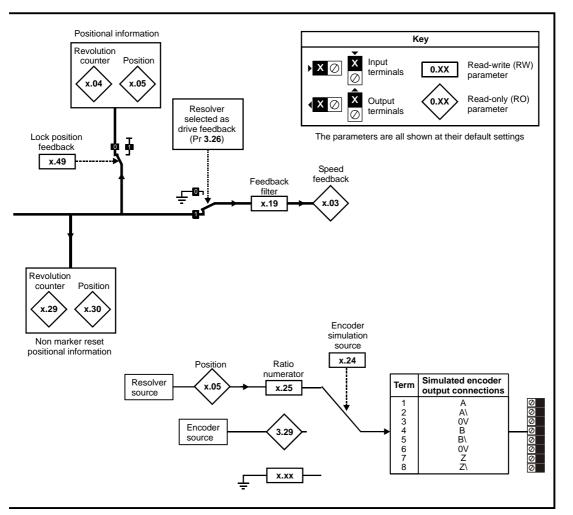
Safety Information	Product Information	Mechanical Installation	Electrical Installation	Getting Started	Basic Parameters	Running the motor	Optimisation	Smartcard operation	Onboard PLC	Advanced Parameters	Technical Data	Diagnostics	UL Listing Information

Safety Product Mechanical Electrical Getting Basic Running the motor Optimisati	on Smartcard operation PLC Advanced Parameters Data Diagnostics UL Listing Information
--	--

SM-Universal Encoder Plus parameters


	Parameter	R	ange	(\$)		T	De	ault(⇔)			ти	ре		
	Falameter	OL			CL		OL	VT	SV			. iy	he	_	
x.01	Solutions Module ID		0 to 59					102		RO					US
x.02	Solutions Module software version		00 to 9							RO			NC		
x.03	Speed		,000.0			_				RO	Bi	FI	NC		
x.04	Revolution counter	0 to 65,				_				RO		FI FI	NC NC		
x.05	Position	0 to 65,535 (1				_				RO					
x.06	Fine position	0 to 65,535 (1/								RO	Uni	FI	NC	PT	
x.07	Marker position reset disable		(0) or		,	_		OFF (0)		RW	Bit		NC		US
x.08	Marker flag Encoder turns/ linear encoder comms		(0) or		1)	_	(0FF (0)		RW			NC		
x.09	to sine wave ratio	0	to 16	bits				16		RW					US
x.10	Equivalent lines per revolution	0	to 50,	000				4096		RW	Uni				US
x.11	Single turn comms bits/ linear encoder comms bits	0	to 32	bits				0		RW	Uni				US
x.12	Motor thermistor check enable	OFF	(0) or	On (1)		0	0FF (0)		RW	Bit				US
x.13	Encoder supply voltage	5V (0),	8V (1)), 15	V (2)			5V (0)		RW	Uni				US
x.14	Encoder comms baud rate	100 (0), 200 (1), 1,000 (5),					:	800 (2)		RW	Txt				US
x.15	Encoder type	Ab (0), Fd (1), Fd.SErVO (4), SC.HiPEr (7), E SSI (10), SC.S	Fr (2) Fr.SE), Ab. ErVO (8), S	SErVO (3), (5), SC (6), SC.EndAt (9),			Ab (0)		RW	Uni				US
x.16	Rotary encoder select/ comms only encoder mode/ terminations		0 to 2	2				1		RW	Uni				US
x.17	Error detection level		0 to 7	7				1		RW	Uni				US
x.18	Auto configuration/ SSI binary format select	OFF	(0) or	On (1)		C	0FF (0)		RW	Bit				US
x.19	Feedback filter			0 to	5 (0 to 16 ms)			0		RW	Uni				US
x.20	Maximum feedback reference	0.0 to	40,00)0.0 r	pm			500.0		RW	Uni				US
x.21	Feedback reference/ motor thermistor resistance	=	100.0) %						RO	Bi		NC	PT	
x.22	Feedback reference scaling	0.0	00 to 4	4.000)			1.000		RW	Uni				US
x.23	Feedback reference destination	Pr 0.00 to Pr 21.51 Pr 0.00 to Pr 21 51					Pr 0.00					DE		PT	US
x.24	Encoder simulation source	Pr 0.00 to Pr 21.51					Pr 0.00							PT	US
x.25	Encoder simulation ratio numerator				0.2500					Uni				US	
x.26	Encoder simulation ratio denominator		00 to 3					.0000		RW	Uni				US
x.27	Encoder simulation resolution select		(0) or			_	0	0FF (0)		RW	Bit		NC		
x.28	Encoder simulation mode	Ab (0), Fd (1), S Ab.L (4), Fd.L						Ab (0)		RW	Txt				US
x.29	Non-marker reset revolution counter	0 to 65.								RO	Uni		NC	PT	
x.30	Non-marker reset position	0 to 65,535 (1	2 ¹⁶ ths	s of a	revolution)					RO	Uni		NC	ΡT	
x.31	Non-marker reset fine position	0 to 65,535 (1/								RO	Uni		NC	PT	
x.32	Marker revolution counter	0 to 65.				-				RO	Uni		NC		
x.33	Marker position	0 to 65,535 (1								RO	Uni		NC		
	Marker fine position	0 to 65,535 (1/											NC		
x.35	Freeze revolution counter	0 to 65,000 (1/				_					Uni		NC		
x.36	Freeze position	0 to 65,535 (1,								RO			NC	PT	
x.37	Freeze fine position	0 to 65,535 (1/								RO	Uni		NC	PT	
x.38	Freeze input mode selection	Bit 0 (L Bit 1 =	SB) = = EIA4	24V 85 in	input put	Г		1			Uni				US
x.39	Freeze flag	Bit 2 (MSB) = From	(0) or			·		0FF (0)		RW	Bit	-	NC		\vdash
x.39 x.40	Pass freeze to drive and other slots		(0) or		,	+		FF (0)		RW			NC		US
x.40	Freeze invert		(0) or	,	,			OFF (0)		RW		<u> </u>	1.00		US
x.42	Encoder comms transmit register/ Sin	to 65,		. /			0		-	Uni		NC			
x.43	signal value Encoder comms receive register/ Cos	n	to 65,	535				0		-	Uni		NC		
x.44	signal value Disable encoder position check		(0) or		1)	_	~) FF (0)		RW		<u> </u>	NC		⊢
x.44 x.45	Position feedback initialised		(0) or					/1 (0)		RV		<u> </u>	NC	рт	\vdash
x.45	Lines per revolution divider		to 10		.'7			1		RW			140		US
x.47	SSI output turns		to 16			1		16		RW		-	1	-	US
x.48	SSI output comms resolution		to 32			1		0		RW		1	1		US
x.49	Lock position feedback		(0) or		1)	1	(0FF (0)		RW		1	1		
x.50	Solutions Module error status*		0 to 2	55						RO		L	NC		
x.51	Solutions Module software sub-version		0 to 9	99						RO	Uni		NC	PT	
RW F	Read / Write RO Read only U	ni Unipolar	Bi	Bi-r	oolar	Bit	Bit paramete	· Txt	Text string						
	Filtered DE Destination N		RA		ing dependent	PT	Protected	US	User save	F	'S	Pow	er do	wn s	ave
	p SLX.Er. Feedback module categ				J									-	

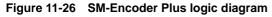
*See trip SLX.Er, Feedback module category on page 284.

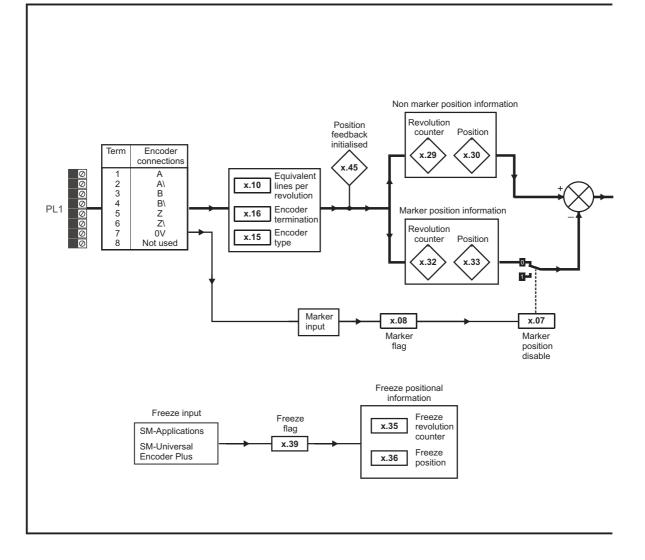

								-					
Safety	Product	Mechanical	Electrical	Getting	Basic	Running the	Ontimisation	Smartcard	Onboard	Advanced	Technical	Diagnostica	UL Listing
Information	Information	Installation	Installation	Started	Parameters	motor	Optimisation	operation	PLC	Parameters	Data	Diagnostics	Information

Safe	ety	Product	Mechanical	Electrical	Getting	Basic	Running the	Optimisation	Smartcard	Onboard	Advanced	Technical	Diagnostics	UL Listing
Inform	ation	Information	Installation	Installation	Started	Parameters	motor	Optimisation	operation	PLC	Parameters	Data	Diagnostics	Information

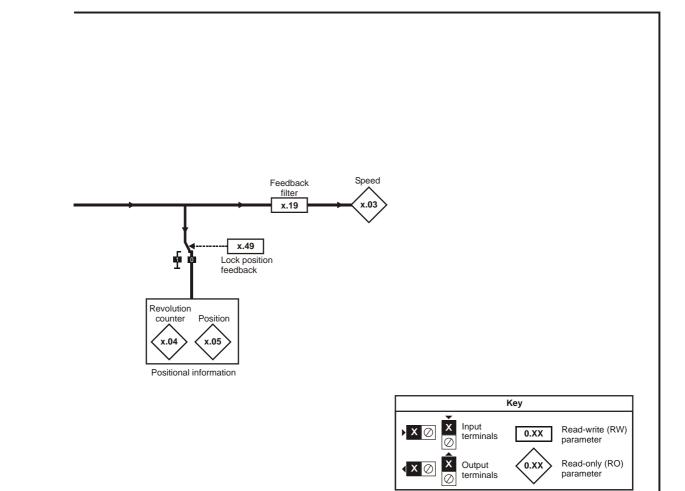
Figure 11-25 SM-Resolver logic diagram

Safety Product Mechanical Electrical Getting Basic Information Information Installation Installation Started Parameters	Running the motor Optimisation	Smartcard operation	Onboard PLC	Advanced Parameters	Technical Data	Diagnostics	UL Listing Information
---	--------------------------------	---------------------	----------------	------------------------	-------------------	-------------	---------------------------




SM-Resolver parameters

	Do	ramet	or		F	Range	(\$)		Defa	ult(⇔)				т.	n 0		
	Fai	ameu	ei	_	OL		CL		OL	νт	SV	-		Ту	pe		
x.01	Solutions Mo	odule II	D			0 to 5	99		1	01		RO	Uni			PT	US
x.03	Speed				±4	0,000.0) rpm					RO	Bi	FI	NC	PT	
x.04	Revolution c	ounter			0 to 65	i,535 re	evolutions					RO	Uni	FI	NC	PT	
x.05	Position				0 to 65,535	1/2 ¹⁶ th	s of a revolution					RO	Uni	FI	NC	PT	
x.10	Equivalent li	nes pe	r revolution		() to 50,	000		4	096		RW	Uni				US
x.13	Resolver exc	citation			3:1 (0), 2:1	(1 or 2)		3:1	1 (0)		RW	Uni				US
x.15	Resolver pol	es				4 pole oole (3	(1), 6 pole (2), to 11)		2 pc	ole (0)		RW	Uni				US
x.17	Error detecti	on leve	el	E	Bit 0 (LSB) = Wire Bit 1 = Phase erro Bit 2 (MSB) = SSI /alue is binary su	r detec power				1		RW	Uni				US
x.19	Feedback fil	ter			0 (0), 1 (1), 2 (2	2), 4 (3), 8 (4), 16 (5) ms			0		RW	Txt				US
x.24	Encoder sim	ulation	source		Pr 0 .	00 to F	Pr 21.51		Pr	0.00		RW	Uni			PT	US
x.25	Encoder sim	ulation	ratio numerato	r	0.0	000 to 3	3.0000		0	.25		RW	Uni				US
x.29	Non-marker	reset r	evolution counter	ər	0 to 65	i,535 re	evolutions					RO	Uni		NC	PT	
x.30	Non-marker	reset p	osition		0 to 65,535	1/2 ¹⁶ th	s of a revolution					RO	Uni		NC	PT	
x.35	Freeze revol	ution c	ounter		0 to 65	i,535 re	evolutions					RO	Uni		NC	PT	
x.36	Freeze posit	ion			0 to 65,535	1/2 ¹⁶ th	s of a revolution					RO	Uni		NC	PT	
x.39	Freeze flag				OFF	- (0) or	On (1)		OF	F (0)		RW	Bit		NC		
x.45	Position feed	dback i	nitialised		OFF	- (0) or	On (1)			. ,		RO	Bit		NC	PT	
x.49	Lock position	n feedb	back		OFF	(0) or	On (1)		OF	F (0)		RW	Bit		NC		
x.50	Solutions Mo	odule e	rror status*			0 to 2	55					RO	Uni		NC	PT	
RW	Read / Write	RO	Read only	Uni	Unipolar	Bi	Bi-polar	Bit	Bit parameter	Txt	Text string						
FI	Filtered	DE	Destination	NC	Not cloned	RA	Rating dependent	PT	Protected	US	User save	P	'S I	Powe	er dov	vn s	ave

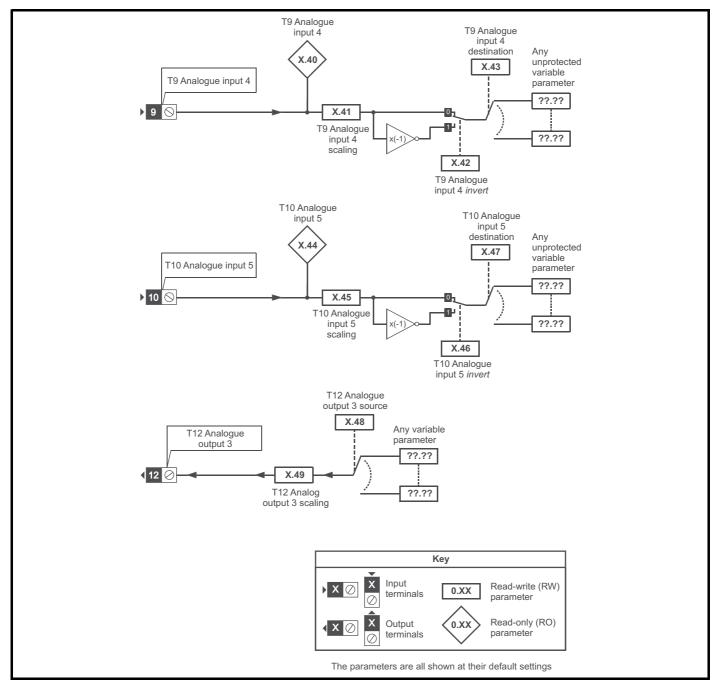

*See trip SLX.Er, Feedback module category on page 284.

Safety Information	Product Information	Mechanical Installation	Electrical Installation	Getting Started	Basic Parameters	Running the motor	Optimisation	Smartcard operation	Onboard PLC	Advanced Parameters	Technical Data	Diagnostics	UL Listing Information
-----------------------	------------------------	----------------------------	----------------------------	--------------------	---------------------	----------------------	--------------	---------------------	----------------	------------------------	-------------------	-------------	---------------------------

Safety	Product	Mechanical	Electrical	Getting		Running the	Optimisation	Smartcard	Onboard	Advanced	Technical	Diagnostics	UL Listing
Information	Information	Installation	Installation	Started	Parameters	motor	- P	operation	PLC	Parameters	Data	g	Information

The parameters are all shown at their default settings

	Pa	ramet	or		F	Range	(\$)		0	efault(⇔)				т.	n 0		
	Fa	amet	ei		OL		CL		OL	VT		sv	-		Ту	pe		
x.01	Solutions Mo	odule II	D			0 to 5	99			101			RO	Uni			PT	U
x.03	Speed				±4	0,000.0) rpm						RO	Bi	FI	NC	PT	
x.04	Revolution c	ounter			0 to 65	5,535 re	evolutions						RO	Uni	FI	NC	PT	
x.05	Position				0 to 65,535	1/2 ¹⁶ th	s of a revolution						RO	Uni	FI	NC	PT	
x.07	Marker posit	ion res	et disable		OF	= (0) or	On (1)			OFF (0))		RW	Bit				U
x.08	Marker flag				OF	= (0) or	On (1)			OFF (0))		RW	Bit		NC		
x.10	Equivalent li	nes pe	r revolution		() to 50,	000			4096			RW	Uni				U
x.15	Encoder type	е			Ab (0), Fd (1), Fr (2),			AB (0)			RW	Uni				U
x.16	Encoder terr	ninatio	n			0 to 2	2			1			RW	Uni				U
x.19	Feedback fil	ter			0 (0), 1 (1), 2 (2	2), 4 (3), 8 (4), 16 (5) ms			0			RW	Txt				U
x.29	Non-marker	reset r	evolution count	er	0 to 65	5,535 re	evolutions						RO	Uni		NC	PT	
x.30	Non-marker	reset p	osition		0 to 65,535	1/2 ¹⁶ th	s of a revolution						RO	Uni		NC	PT	
x.32	Marker revol	ution c	ounter		0 to 65	5,535 re	evolutions						RO	Uni		NC	PT	[
x.33	Marker posit	ion			0 to 65,535	1/2 ¹⁶ th	s of a revolution						RO	Uni		NC	PT	
x.35	Freeze revol	ution c	ounter				evolutions						RO	Uni		NC	PT	
x.36	Freeze posit	ion			0 to 65 535	1/2 ¹⁶ th	s of a revolution						RO	Uni		NC	PT	
x.39	Freeze flag					= (0) or				OFF (0))		RW	Bit		NC		
x.45	Position feed	dback i	nitialised			= (0) or	. ,				,		RO	Bit		NC	PT	-
x.49	Lock position	n feedb	back		OFI	= (0) or	On (1)			OFF (0))		RW	Bit		NC		
x.50	Solutions Mo	odule e	rror status*			0 to 2	55				,		RO	Uni		NC	PT	
	5 I.)					5.			5									_
	Read / Write	RO	Read only	Uni	Unipolar	Bi	Bi-polar	Bit	Bit parame			xt string			_			
FI	Filtered	DE	Destination	NC	Not cloned	RA	Rating dependent	PT	Protected	U	IS Us	er save	P	s	Powe	er dov	wn s	ave


*See trip SLX.Er, Feedback module category on page 284.

SM-Encoder Plus parameters

		Safety Information	Product Information	Mechanical Installation	Electrical Installation	Getting Started	Basic Parameters	Running the motor	Optimisation	Smartcard operation	Onboard PLC	Advanced Parameters	Technical Data	Diagnostics	UL Listing Information
--	--	-----------------------	------------------------	----------------------------	----------------------------	--------------------	---------------------	-------------------	--------------	------------------------	----------------	------------------------	-------------------	-------------	---------------------------

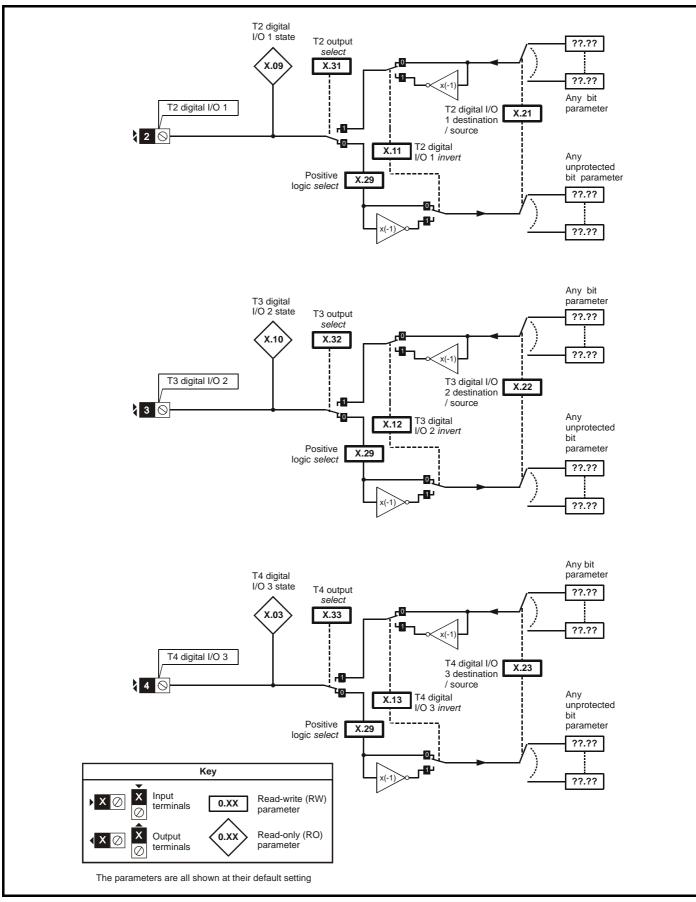

11.15.3 Automation module category

Figure 11-27 SM-I/O Plus analogue logic diagram

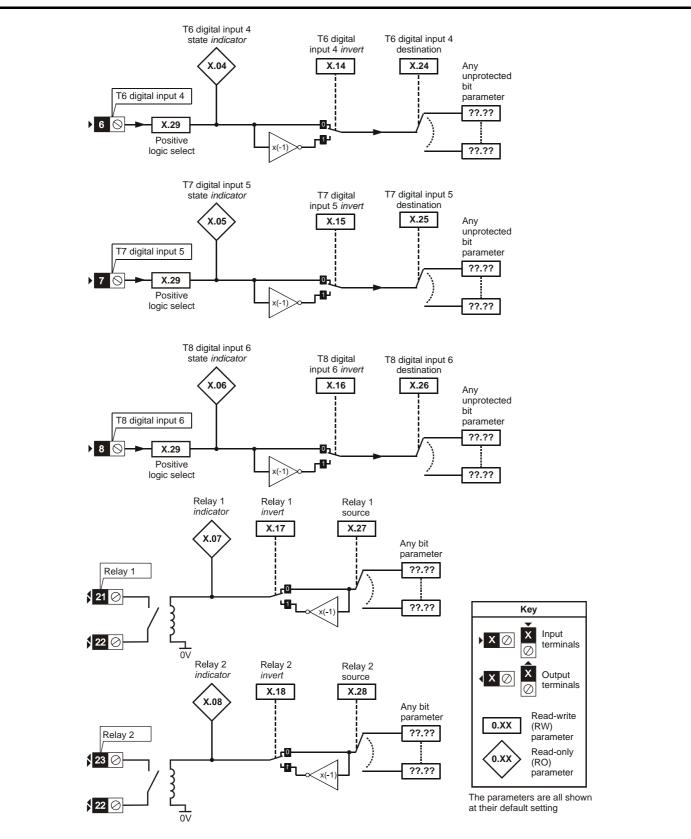
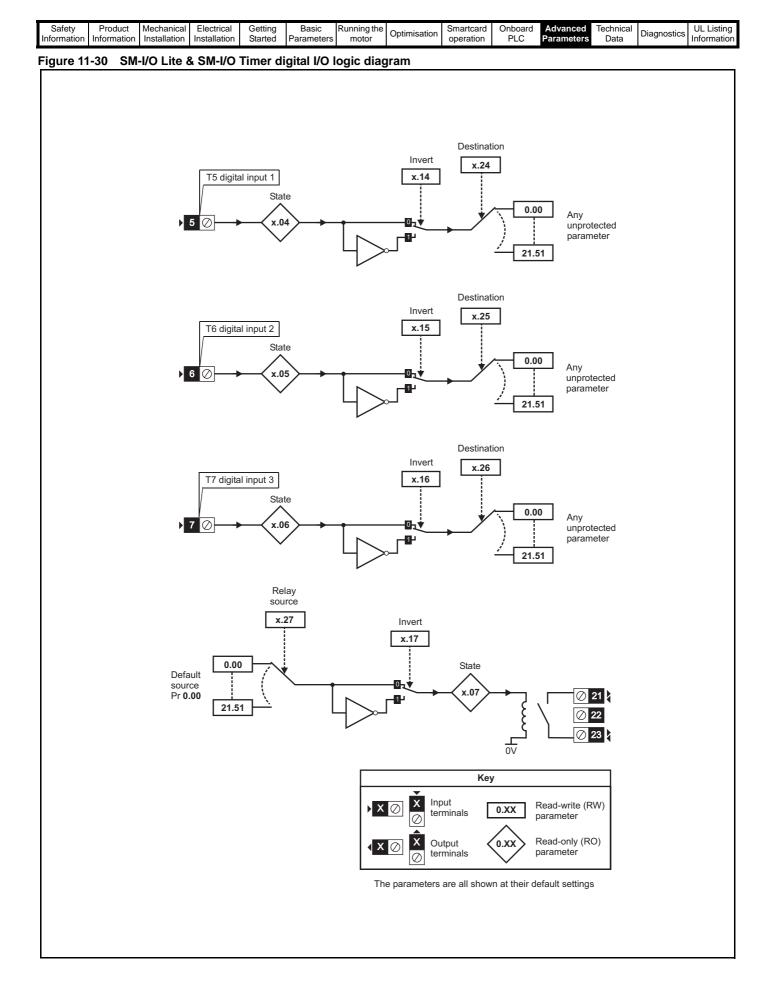
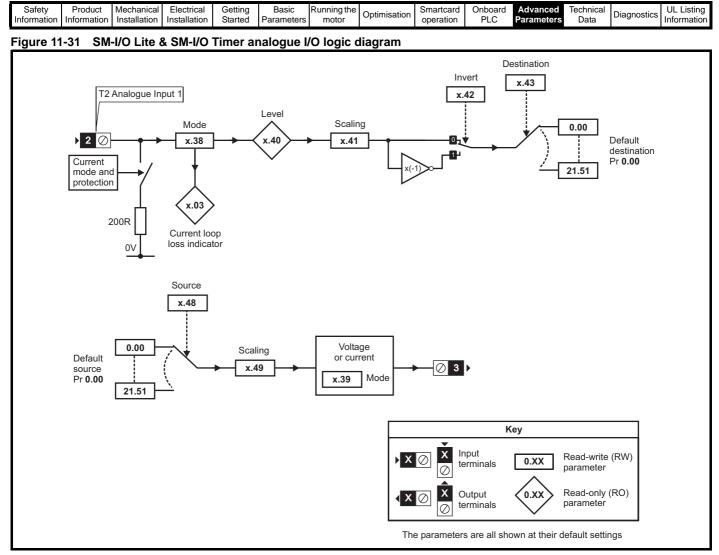

Safety Information Product Information Mechanical Installation Electrical Installation Getting Started Basic Parameters Running the motor Optimisation Smartcard operation Onboard PLC Advanced Parameters Technical Data Diagnostics I	UL Listing Information
--	---------------------------

Figure 11-28 SM-I/O Plus digital logic diagram 1

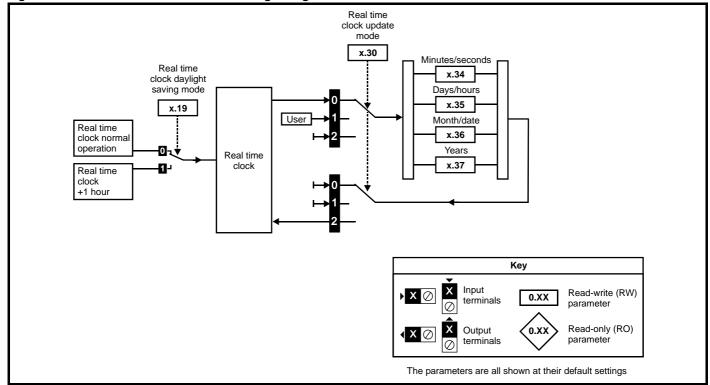
Safety	Product	Mechanical	Electrical	Gettina	Basic	Runnina the	A <i>i i i i</i>	Smartcard	Onboard	Advanced	Technical	D :	UL Listina
Information	Information	Installation	Installation	Started	Parameters	motor	Optimisation	operation	PLC	Parameters	Data	Diagnostics	Information
inionnation	monnation	Installation	mstallation	Stanteu	i alameters	motor		operation	I LO	ralameters	Dala		monnauon

Figure 11-29 SM-I/O Plus digital logic diagram 2


Safety Information Product Information Mechanical Installation Electrical Installation Getting Started Basic Parameters Running the motor Optimisa	tion Smartcard operation PLC Parameters Technical Diagnostics UL Listing Information
---	--


SM-I/O Plus parameters

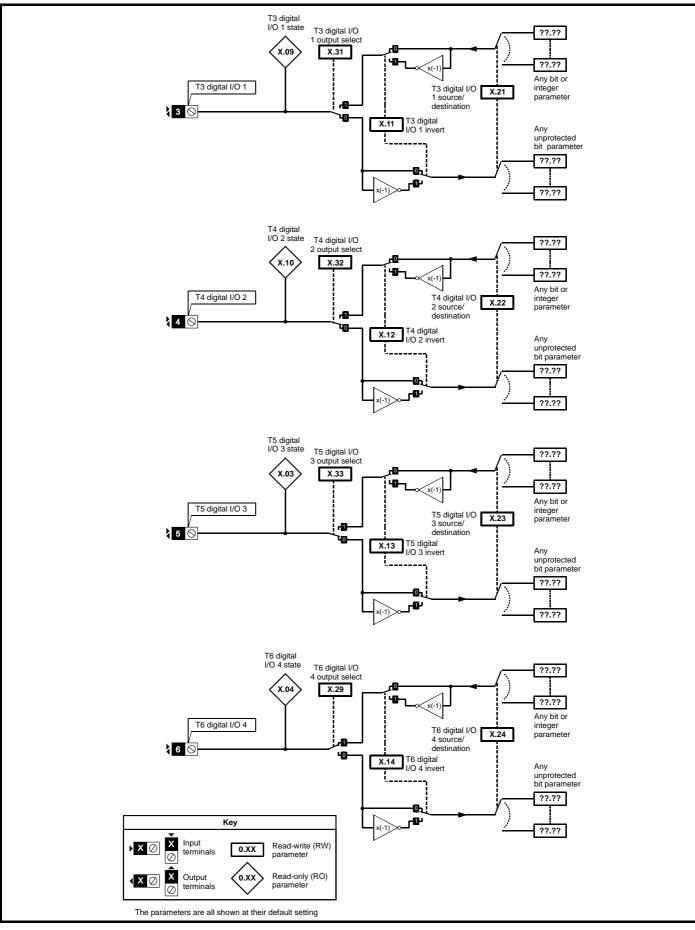

	Parameter	Ran	ige(‡)		Default(⇔)				Ту	20		
	Falameter	OL	CL	OL	VT	sv			I Y	he		
x.01	Solutions Module ID		o 599		201			Uni				US
x.03	T4 digital I/O 3 state) or On (1)				RO	Bit			PT	
x.04	T6 digital input 4 state	OFF (0)) or On (1)				RO	Bit		-	PT	
x.05	T7 digital input 5 state) or On (1)				RO	Bit		NC	PT	
x.06	T8 digital input 6 state	OFF (0) or On (1)				RO	Bit		NC	PT	
x.07	Relay 1 state) or On (1)				RO	Bit		NC	PT	
x.08	Relay 2 state) or On (1)				RO	Bit			PT	
x.09	T2 digital I/O 1 state	OFF (0) or On (1)				RO	Bit		NC	PT	
x.10	T3 digital I/O 2 state	OFF (0)) or On (1)				RO	Bit		NC	PT	
x.11	T2 digital I/O 1 invert	OFF (0)) or On (1)		OFF (0)		RW	Bit				US
x.12	T3 digital I/O 2 invert	OFF (0) or On (1)		OFF (0)		RW	Bit				US
x.13	T4 digital I/O 3 invert	OFF (0) or On (1)		OFF (0)		RW	Bit				US
x.14	T6 digital input 4 invert) or On (1)		OFF (0)		RW					US
x.15	T7 digital input 5 invert) or On (1)		OFF (0)		RW					US
x.16	T8 digital input 6 invert	OFF (0) or On (1)		OFF (0)		RW	Bit				US
x.17	Relay 1 invert	OFF (0)) or On (1)		OFF (0)		RW	Bit				US
x.18	Relay 2 invert	OFF (0)) or On (1)		OFF (0)		RW	Bit				US
x.20	Digital I/O read word	0 t	o 511				RO	Uni		NC	PT	
x.21	T2 digital I/O 1 source/ destination	Pr 0.00	to Pr 21.51		Pr 0.00		RW	Uni	DE		PT	US
x.22	T3 digital I/O 2 source/ destination	Pr 0.00	to Pr 21.51		Pr 0.00		RW	Uni	DE		PT	US
x.23	T4 digital I/O 3 source/ destination	Pr 0.00	to Pr 21.51		Pr 0.00		RW	Uni	DE		PT	US
x.24	T6 digital input 4 destination	Pr 0.00	to Pr 21.51		Pr 0.00		RW	Uni	DE		ΡT	US
x.25	T7 digital input 5 destination	Pr 0.00	to Pr 21.51		Pr 0.00		RW	Uni	DE		ΡT	US
x.26	T8 digital input 6 destination	Pr 0.00	to Pr 21.51		Pr 0.00		RW	Uni	DE		ΡT	US
x.27	Relay 1 source	Pr 0.00	to Pr 21.51		Pr 0.00		RW	Uni			ΡT	US
x.28	Relay 2 source	Pr 0.00	to Pr 21.51		Pr 0.00		RW	Uni			PT	US
x.29	Input polarity select	OFF (0)) or On (1)	0	n (1) (positive l	ogic)	RW	Bit			PT	US
x.31	T2 digital I/O 1 output select	OFF (0)) or On (1)		OFF (0)		RW	Bit				US
x.32	T3 digital I/O 2 output select	OFF (0) or On (1)		OFF (0)		RW	Bit				US
x.33	T4 digital I/O 3 output select	OFF (0) or On (1)		OFF (0)		RW	Bit				US
x.40	Analogue input 1	±1(0.0%			_	RO	Bi	l	NC	PT	
x.41	Analogue input 1 scaling	0 to	4.000		1.000		RW	Uni				US
x.42	Analogue input 1 invert	OFF (0)) or On (1)		OFF (0)		RW	Bit				US
x.43	Analogue input 1 destination	Pr 0.00	to Pr 21.51		Pr 0.00		RW	Uni	DE		PT	US
x.44	Analogue input 2	±1(0.0%				RO	Bi		NC	PT	
x.45	Analogue input 2 scaling	0.000	to 4.000		1.000		RW	Uni				US
x.46	Analogue input 2 invert) or On (1)		OFF (0)		RW					US
x.47	Analogue input 2 destination		to Pr 21.51		Pr 0.00		RW	Uni	DE		PT	US
x.48	Analogue output 1 source	Pr 0.00	to Pr 21.51		Pr 0.00		RW	Uni			PT	US
x.49	Analogue output 1 scaling	0.000	to 4.000		1.000		RW	Uni	l			US
x.50	Solutions Module error status*	0 t	o 255				RO	Uni		NC	PT	


RW	Read / Write	RO	Read only	Uni	Unipolar	Bi	Bi-polar	Bit	Bit parameter	Txt	Text string		
FI	Filtered	DE	Destination	NC	Not cloned	RA	Rating dependent	PT	Protected	US	User save	PS	Power down save

*See trip SLX.Er, Automation (I/O Expansion) module category on page 286.

Safety Information	Product Information	Mechanical Installation	Electrical Installation	Getting Started	Basic Parameters	Running the motor	Optimisation	Smartcard operation	Onboard PLC	Advanced Parameters	Technical Data	Diagnostics	UL Listing Information
-----------------------	------------------------	----------------------------	----------------------------	--------------------	---------------------	-------------------	--------------	---------------------	----------------	------------------------	-------------------	-------------	---------------------------

SM-I/O Timer & SM-I/O Lite parameters


	Parameter	Ran	ge(≎)	I	Default(⇔	·)			The				SM	I-I/O
	Farameter	OL	CL	OL	VT	sv			Ту	pe			Lite	Timer
x.01	Solutions Module ID	0 to	599		-I/O Timer: 10I/O Lite: 2		RO	Uni			PT	US	~	~
x.02	Solutions Module software version	0.00 t	o 99.99				RO	Uni		NC	PT		✓	✓
x.03	Current loop loss indicator	OFF (0)	or On (1)				RO	Bit		NC	PΤ		✓	√
x.04	T5 digital input 4 state	OFF (0)	or On (1)				RO	Bit		NC	PT		✓	✓
x.05	T6 digital input 5 state	OFF (0)	or On (1)				RO	Bit		NC	PT		✓	√
x.06	T7 digital input 6 state	OFF (0)	or On (1)				RO	Bit		NC	PΤ		✓	√
x.07	Relay 1 state	OFF (0)	or On (1)				RO	Bit		NC	PT		✓	√
x.14	T5 digital input 4 invert	OFF (0)	or On (1)		OFF (0)		RW	Bit				US	✓	√
x.15	T6 digital input 5 invert	OFF (0)	or On (1)		OFF (0)		RW	Bit				US	~	✓
x.16	T7 digital input 6 invert	OFF (0)	or On (1)		OFF (0)		RW	Bit				US	√	✓
x.17	Relay 1 invert	OFF (0)	or On (1)		OFF (0)		RW	Bit				US	√	√
x.19	Real time clock daylight saving mode	OFF (0)	or On (1)		OFF (0)		RW	Bit				US	√	√
x.20	Digital I/O read word	0 to	o 255				RO	Uni		NC	ΡT		✓	✓
x.24	T5 digital input 4 destination	Pr 0.00 t	o Pr 21.51		Pr 0.00		RW	Uni	DE		PT	US	~	✓
x.25	T6 digital input 5 destination	Pr 0.00 t	o Pr 21.51		Pr 0.00		RW	Uni	DE		PT	US	~	√
x.26	T7 digital input 6 destination	Pr 0.00 t	o Pr 21.51		Pr 0.00		RW	Uni	DE		PT	US	✓	✓
x.27	Relay 1 source	Pr 0.00 t	o Pr 21.51		Pr 0.00		RW	Uni			PT	US	√	√
x.30	Real time clock update mode	0	to 2		0		RW	Uni		NC				√
x.34	Real time clock time: minutes.seconds	0.00 t	o 59.59				RW	Uni		NC	ΡT			✓
x.35	Real time clock time: days.hours	1.00	to 7.23				RW	Uni		NC	ΡT			√
x.36	Real time clock time: months.days	0.00 t	o 12.31				RW	Uni		NC	ΡT			✓
x.37	Real time clock time: years	2000	to 2099				RW	Uni		NC	ΡT			√
x.38	Analogue input 1 mode	20-4.tr (3), 4-2) (1), 4-20.tr (2), 20 (4), 20-4 (5), DLt(6)		0-20 (0)		RW	Txt				US	~	~
x.39	Analogue output mode	VÓ	, 4-20 (2), 20-4 (3), Lt (4)		0-20 (0)		RW	Txt				US	~	~
x.40	Analogue input 1	- : -	0.0%				RO	Bi		NC	PT		~	✓
x.41	Analogue input 1 scaling	0 to	4.000		1.000		RW	Uni				US	√	✓
x.42	Analogue input 1 invert	. ,	or On (1)		OFF (0)		RW	Bit				US	√	✓
x.43	Analogue input 1 destination	Pr 0.00 t	o Pr 21.51		Pr 0.00		RW	Uni	DE		PT	US	√	~
x.48	Analogue output 1 source	Pr 0.00 t	o Pr 21.51		Pr 0.00		RW	Uni			PT	US	~	√
x.49	Analogue output 1 scaling	0.000	to 4.000		1.000		RW	Uni				US	√	✓
x.50	Solutions Module error status*	0 to	255				RO	Uni		NC	PT		~	✓
x.51	Solutions Module software sub-version	0 t	o 99				RO	Uni		NC	PΤ		✓	√

RW	Read / Write	RO	Read only	Uni	Unipolar	Bi	Bi-polar	Bit	Bit parameter	Txt	Text string		
FI	Filtered	DE	Destination	NC	Not cloned	RA	Rating dependent	PT	Protected	US	User save	PS	Power down save

*See trip SLX.Er, Automation (I/O Expansion) module category on page 286.

Safety Information Product Information Mechanical Installation Electrical Installation Getting Started Basic Parameters Running the motor Optimisation Smartcard operation Onboard PLC Advanced Parameters Technical Data Diagnostics UL Listing Information
--

Figure 11-33 SM-PELV digital I/O logic diagram

SafetyProductMechanicalElectricalGettingBasicRunning the motorOptimisationSmartcard operationOnboardAdvancedTechnicalInformationInstallationInstallationInstallationStartedParametersmotorOptimisationSmartcard operationOnboardAdvancedTechnical	Diagnostics	UL Listing Information
--	-------------	---------------------------

Figure 11-34 SM-PELV digital input logic diagram

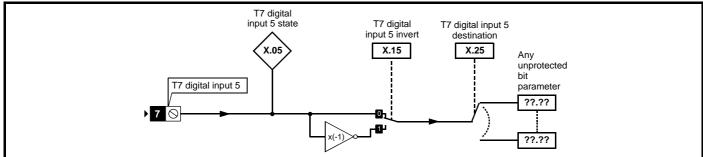
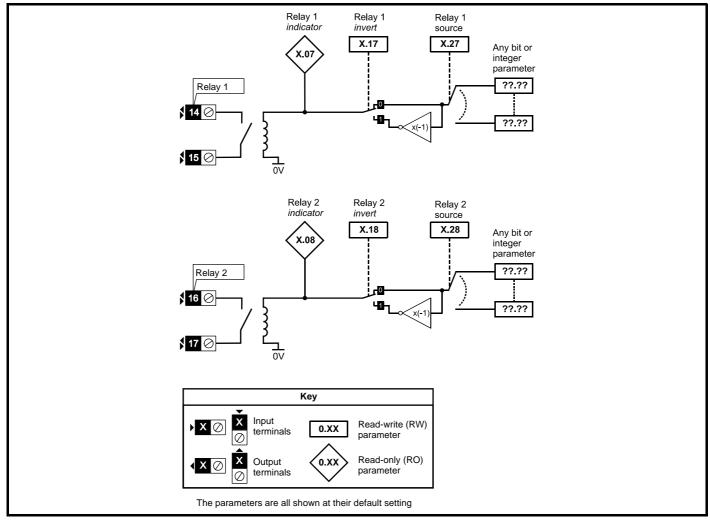



Figure 11-35 SM-PELV relay logic diagram

Ir	Safety nformation	Product Information	Mechanical Installation	Electrical Installation	Getting Started	Basic Parameters	Running the motor	Optimisation	Smartcard operation	Onboard PLC	Advanced Parameters	Diagnostics	UL Listing Information
					0.000.000.00					. = .			

Figure 11-36 SM-PELV analog input logic diagram

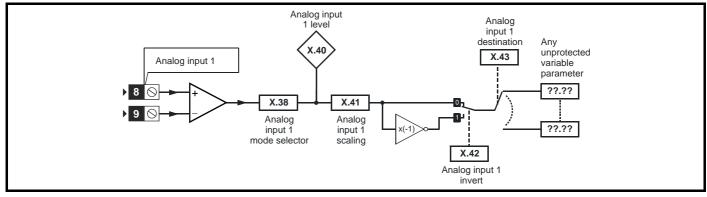
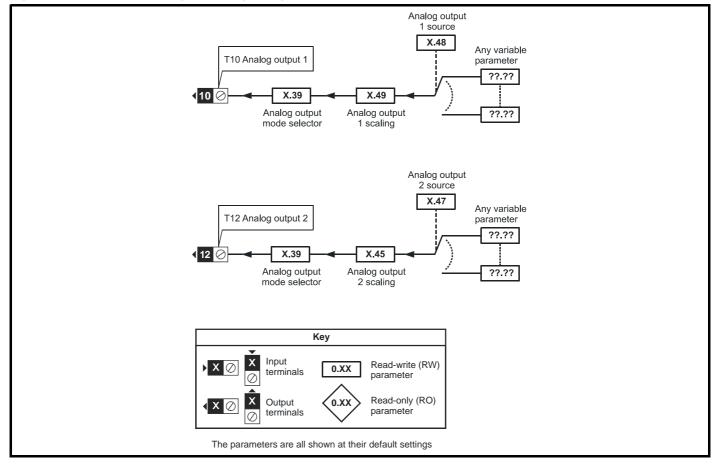
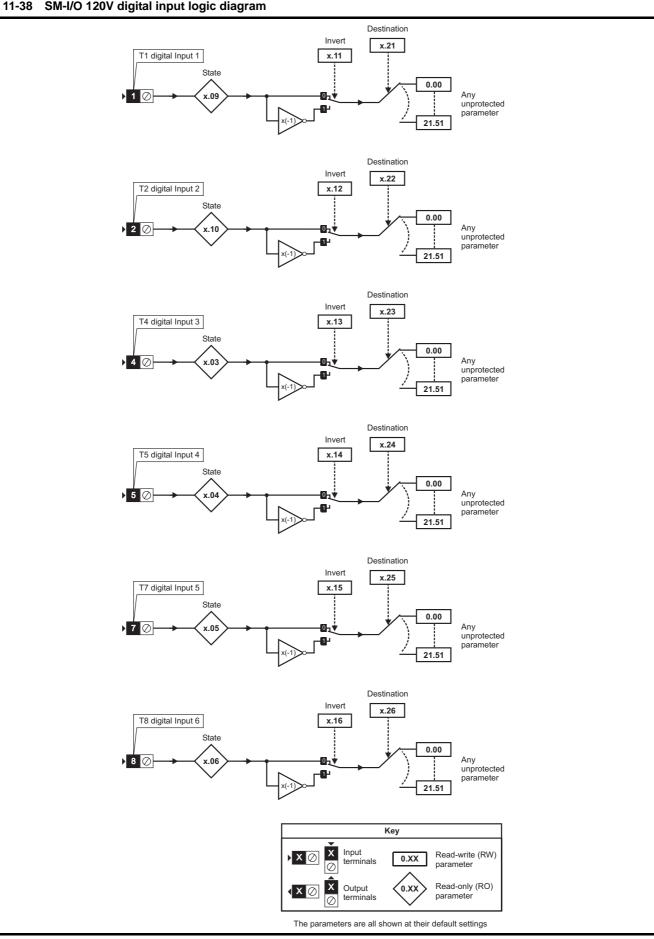



Figure 11-37 SM-PELV analog output logic diagram

SafetyProductMechanicalElectricalGettingBasicRunning the motorOptimisationSmartcardOnboardAdvancedTechnical DataDiagnosticsInformationInstallationInstallationStartedStartedParametersmotorOptimisationPLCParametersDataDiagnostics	UL Listing Informatio
---	--------------------------

SM-PELV parameters


	Parameter	Ran	ge(‡)		Default(⇔))			Ту	n 0		
	Falallelei	OL	CL	OL	VT	SV			чy	he		
x.01	Solutions Module ID		o 599		204			Uni				US
x.02	Solutions Module software version		o 99.99				RO	Uni				
x.03	T5 digital I/O 3 state		or On (1)				RO	Bit		NC		
x.04	T6 digital I/O 4 state		or On (1)				RO	Bit		NC	PT	
x.05	T7 digital input 5 state	OFF (0)	or On (1)				RO	Bit		NC		
x.07	Relay 1 state		or On (1)				RO	Bit				
x.08	Relay 2 state		or On (1)				RO	Bit		NC	PT	
x.09	T3 digital I/O 1 state	OFF (0)	or On (1)				RO	Bit		NC	PT	
x.10	T4 digital I/O 2 state	OFF (0)	or On (1)				RO	Bit		NC	PT	
x.11	T3 digital I/O 1 invert	OFF (0)	or On (1)		OFF (0)		RW	Bit				US
x.12	T4 digital I/O 2 invert	OFF (0)	or On (1)		OFF (0)		RW	Bit				US
x.13	T5 digital I/O 3 invert	OFF (0)	or On (1)		OFF (0)		RW	Bit				US
x.14	T6 digital I/O 4 invert	OFF (0)	or On (1)		OFF (0)		RW	Bit				US
x.15	T7 digital input 5 invert	OFF (0)	or On (1)		OFF (0)		RW	Bit				US
x.17	Relay 1 invert	OFF (0)	or On (1)		OFF (0)		RW	Bit				US
x.18	Relay 2 invert	OFF (0)	or On (1)		OFF (0)		RW	Bit				US
x.20	Digital I/O read word	0 to	0 255				RO	Uni		NC	PT	
x.21	T3 digital I/O 1 source/destination	Pr 0.00 t	o Pr 21.51		Pr 0.00		RW	Uni	DE		PT	US
x.22	T4 digital I/O 2 source/destination	Pr 0.00 t	o Pr 21.51		Pr 0.00		RW	Uni	DE		PT	US
x.23	T5 digital I/O 3 source/destination	Pr 0.00 t	o Pr 21.51		Pr 0.00		RW	Uni	DE		PT	US
x.24	T6 digital I/O 4 source/destination	Pr 0.00 t	o Pr 21.51		Pr 0.00		RW	Uni	DE		PT	US
x.25	T7 digital input 5 destination	Pr 0.00 t	o Pr 21.51		Pr 0.00		RW	Uni	DE		PT	US
x.27	Relay 1 source	Pr 0.00 t	o Pr 21.51		Pr 0.00		RW	Uni			PT	US
x.28	Relay 2 source	Pr 0.00 t	o Pr 21.51		Pr 0.00		RW	Uni			PT	US
x.29	T6 digital I/O 4 output select	OFF (0)	or On (1)		On (1)		RW	Bit				US
x.31	T3 digital I/O 1 output select	OFF (0)	or On (1)		OFF (0)		RW	Bit				US
x.32	T4 digital I/O 2 output select	OFF (0)	or On (1)		OFF (0)		RW	Bit				US
x.33	T5 digital I/O 3 output select	OFF (0)	or On (1)		OFF (0)		RW	Bit				US
x.38	Analogue input 1 mode		I-20.tr (2), 20-4.tr (3), , 20-4 (5)		0-20 (0)		RW	Txt				US
x.39	Analogue output mode	0-20 (0), 20-0 (1)	, 4-20 (2), 20-4 (3)		0-20 (0)		RW	Txt				US
x.40	Analogue input 1 level	0.0 to	100.0%				RO	Bi		NC	PT	
x.41	Analogue input 1 scaling	0.000	to 4.000		1.000		RW	Uni				US
x.42	Analogue input 1 invert	OFF (0)	or On (1)		OFF (0)		RW	Bit				US
x.43	Analogue input 1 destination	Pr 0.00 t	o Pr 21.51		Pr 0.00		RW	Uni	DE		PT	US
x.45	Analogue output 2 scaling	0.000	to 4.000		1.000		RW	Uni				US
x.47	Analogue output 2 source	Pr 0.00 t	o Pr 21.51		Pr 0.00		RW	Uni			PT	US
x.48	Analogue output 1 source	Pr 0.00 t	o Pr 21.51		Pr 0.00		RW	Uni			PT	US
x.49	Analogue output 1 scaling		to 4.000		1.000		RW	Uni				US
x.50	Solutions Module error status*		0 255				RO	Uni		NC	PT	
x.51	Solutions Module software sub-version	0 t	o 99				RO	Uni		NC	PT	
X.31	Solutions would soltware sub-version	01	0.33				NU	UII		NC	ΓI	

RW	Read / Write	RO	Read only	Uni	Unipolar	Bi	Bi-polar	Bit	Bit parameter	Txt	Text string		
FI	Filtered	DE	Destination	NC	Not cloned	RA	Rating dependent	PT	Protected	US	User save	PS	Power down save

*See trip SLX.Er, Automation (I/O Expansion) module category on page 286.

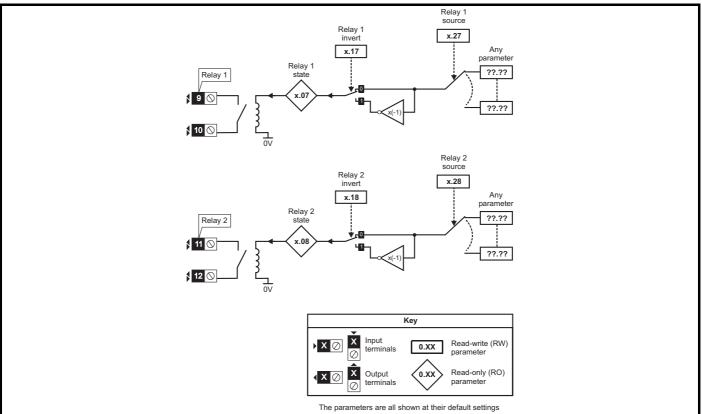

Safety Information	Product Information	Mechanical Installation	Electrical Installation	Getting Started	Basic Parameters	Running the motor	Optimisation	Smartcard operation	Onboard PLC	Advanced Parameters	Technical Data	Diagnostics	UL Listing Information

Figure 11-38 SM-I/O 120V digital input logic diagram

	Safety Informatio	Product Information	Mechanical Installation	Electrical Installation	Getting Started	Basic Parameters	Running the motor	Optimisation	Smartcard operation	Onboard PLC	Advanced Parameters	Technical Data	Diagnostics	UL Listing Information
--	----------------------	------------------------	----------------------------	----------------------------	--------------------	---------------------	-------------------	--------------	---------------------	----------------	------------------------	-------------------	-------------	---------------------------

Figure 11-39 SM-I/O 120V digital I/O logic diagram

SM-I/O 120V parameters

		Ba	rame	tor			Range	e(\$)		Defa	ult(⇔)				Ту	20		
		га	lame	lei		OL		CL		OL \	/т	sv	-		I y	Je		
x.0	01 Soluti	ons N	Nodule	e ID			0 to 5	599		2	06		RO	Uni			PT	US
x.0	02 Soluti	ons N	Nodule	e software versi	on		0.00 to	99.99					RO	Uni		NC	PT	
x.0	03 T4 dig	ital ir	nput 3	state		O	FF (0) o	or On (1)					RO	Bit		NC	PT	
x.0	04 T5 dig	ital ir	nput 4	state		O	FF (0) o	or On (1)					RO	Bit		NC	PT	
x.0)5 T7 dig	ital ir	nput 5	state		O	FF (0) o	or On (1)					RO	Bit		NC	PT	
x.0	06 T8 dig	ital ir	nput 6	state		O	FF (0) o	or On (1)					RO	Bit		NC	PT	1
x.0	7 Relay	1 sta	ate			OI	FF (0) o	or On (1)					RO	Bit		NC	PT	1
x.0	8 Relay	2 sta	ate			OI	FF (0) o	or On (1)					RO	Bit		NC	PT	1
x.0)9 T1 dig	ital ir	nput 1	state		O	FF (0) o	or On (1)					RO	Bit		NC		1
x.1	0 T2 dig	ital ir	nput 2	state		O	FF (0) o	or On (1)					RO	Bit		NC	PT	
x.1	1 T1 dig	ital ir	nput 1	invert		O	FF (0) o	or On (1)		OF	F (0)		RW	Bit				US
x.1	2 T2 dig	ital ir	nput 2	invert		O	FF (0) o	or On (1)		OF	F (0)		RW	Bit				US
x.1	3 T4 dig	ital ir	nput 3	invert		O	FF (0) o	or On (1)		OF	F (0)		RW	Bit				US
x.1	4 T5 dig	ital ir	nput 4	invert		O	FF (0) o	or On (1)		OF	F (0)		RW	Bit				US
x.1	5 T7 dig	ital ir	nput 5	invert		O	FF (0) o	or On (1)		OF	F (0)		RW	Bit				US
x.1	6 T8 dig	ital ir	nput 6	invert		O	FF (0) o	or On (1)		OF	F (0)		RW	Bit				US
x.1	,						• • •	or On (1)			F (0)		RW	Bit				US
x.1	8 Relay	2 inv	/ert			O	FF (0) o	or On (1)		OF	F (0)		RW	Bit				US
x.2	20 Digita	I/O	read w	vord			0 to 2	255					RO	Uni		NC	PT	1
x.2	21 T1 dig	ital ir	nput 1	destination		Pr	0.00 to	Pr 21.51		Pr	0.00			Uni				US
x.2	J			destination		Pr	0.00 to	Pr 21.51		Pr	0.00			Uni				US
x.2	23 T4 dig	ital ir	nput 3	destination		Pr	0.00 to	Pr 21.51		Pr	0.00		RW	Uni	DE		PT	US
x.2	24 T5 dig	ital ir	nput 4	destination		Pr	0.00 to	Pr 21.51		Pr	0.00			Uni				US
x.2	25 T7 dig	ital ir	nput 5	destination		Pr	0.00 to	Pr 21.51		Pr	0.00		RW	Uni	DE			US
x.2	J			destination				Pr 21.51			0.00			Uni				US
x.2	-							Pr 21.51			0.00			Uni				US
x.2					Pr 0.00 to Pr 21.51			Pr	0.00			Uni				US		
x.5		-		e error status*	0 to 255						-	Uni		NC				
x.5	51 Solution	ns N	lodule	software sub-ve	ersion		0 to	99					RO	Uni		NC	PT	
RW	Read / Wr	te	RO	Read only	Uni	Unipolar	Bi	Bi-polar	Bit	Bit parameter	Txt	Text string						_
FI	Filtered		DE	Destination	-				-			User save	P	s	Powe	or dov	vn s	ave
	i illorou			Destination			NC Not cloned RA Rating dependent PT P				PT Protected US User s							~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

*See trip SLX.Er, Automation (I/O Expansion) module category on page 286.

Safety Information	Product Information	Mechanical Installation	Electrical Installation	Getting Started		Running the motor	Optimisation	Smartcard operation	Onboard PLC	Advanced Parameters	Technical Data	Diagnostics	UL Listing Information
-----------------------	------------------------	----------------------------	----------------------------	--------------------	--	-------------------	--------------	---------------------	----------------	------------------------	-------------------	-------------	---------------------------

Applications module parameters

	_		F	Range	e(ĵ;)		T	Defa	ult(⇔))	1		_			
	Parameter		OL		(*)	CL			VT	sv	_		Ту	ре		
x.01	Solutions Module ID			0 to 5	599					•	RO	Uni			PT	US
x.02	Solutions Module software ver	sion		.00 to 9							RO	Uni		NC		
x.03	DPL program status		None (0), Ste			?), Trip (3)					RO	Txt		NC		
x.04	Available system resource			0 to 1							RO	Uni		NC	PT	
x.05	RS485 address			0 to 2					11		RW	Uni				US
x.06	RS485 mode		000 (0) 000 (4)	0 to 2		2 (0) 4000 (4	_		1		RW	Uni				US
x.07	RS485 baud rate		300 (0), 600 (1), 7 9600 (5), 19200 115	(6), 38		7), 57600 (8),	,	480	00 (4)		RW	Txt				US
x.08	RS485 Turnaround delay		() to 25	5 ms				2		RW	Uni				US
x.09	RS485 Tx enable delay			0 to 1					0		RW	Uni				US
x.10	DPL Print Routing		SYPT: OF			On (1)			OFF ())	RW	Bit				US
x.11	Clock tick time (ms)			0 to 2					10		RW	Uni				US
x.12	Motion engine sample rate		dISAbLEd (0), 0.25 2 ms (4)	, 4 ms	(5), 8 r	ns (6)	5),		LEd (0)	RW					US
x.13	Enable autorun			. ,	r On (1				n (1)		RW	Bit				US
x.14	Global run time trip enable				r On (1				F (0)		RW	Bit	<u> </u>			US
x.15	Disable reset on trip cleared		OFI		r On (1)		OF	F (0)		RW	Bit	<u> </u>			US
x.16	Encoder data update rate	turine a		0 to	-	\ \			0		RW	Uni	<u> </u>			US
x.17	Enable parameter over range	trips		. ,	r On (1				F (0)		RW	Bit	<u> </u>			US
x.18	Watchdog enable				r On (1			-	F (0)		RW	Bit	<u> </u>			US
x.19	Save request			. ,	r On (1				F (0)		RW	Bit		NC		110
x.20	Enable power down save Enable menu 20 save and		OF	- (U) OI	r On (1)		OF	F (0)		RW	Bit				US
x.21	Enable menu 20 save and restore CTNet Token Ring ID		OFI	. ,	r On (1)		OF	F (0)		RW					US
x.22	Ū			0 to 2					0		RW	Uni				US
x.23	CTNet node address		F 000 (0) 0 F0	0 to 2		D) 0.005 (0)		0.5	0		RW RW					US
x.24	CTNet baud rate		5.000 (0), 2.50			2), 0.625 (3)	_	2.500 (1) 0,000				Txt				US
x.25	CTNet sync setup CTNet easy mode - first cyclic		0,	000 to 9,999				,				Uni				US
x.26	parameter destination node CTNet easy mode - first cyclic		(0 to 25,503			_		0		RW					US
x.27	parameter CTNet easy mode - second cy			0 to 9,999			_			RW					US	
x.28	parameter destination node CTNet easy mode - second cy		() to 25	,503		_		0		RW	-				US
x.29	source parameter			0 to 9,	999		_	0			RW					US
x.30	parameter destination node	-	() to 25	,503					RW	Uni				US	
x.31	CTNet easy mode - third cyclic parameter CTNet easy mode set-up - Tra			0 to 9,	999		_		0		RW	Uni				US
x.32	slot 1 destination parameter CTNet easy mode set-up - Tra			0 to 9,	999		_		0		RW					US
x.33	slot 2 destination parameter CTNet easy mode set-up - Tra			0 to 9,	999		_		0		_	Uni				US
x.34	slot 3 destination parameter	liisiei		0 to 9,		(2) Event2 (2	0		0		_	Uni				US
x.35	CTNet sync event task ID		Disabled (0), Event (1), Event1 (2), Event2 (3), Event3 (4)				Disal	oled (0)			Txt			DT	US	
x.36	CTNet diagnostic parameter	od		E (0) 6	r On /4)			E (0)		RO			NC	ы	110
x.37	Reject download if drive enabl			()	r On (1	,			F (0)		RW					US
x.38	Do not trip drive on APC run-ti		OFI	. ,	r On (1)		OF	F (0)		RW			NO		US
x.39	Inter-UT70 synchronisation sta			0 to					0		RO			NC		110
x.40	Inter-UT70 master transfer mo	ue		0 to	10 r On (1)		~	1 F (0)		RW RW		-			US US
x.42	Freeze main drive position Freeze invert			. ,	r On (1 r On (1		_		F (0)		RW		-			US
x.43 x.44	Task priority level		UFI	0 to 2		1	_	UF	0		RW					US
x.44 x.48	DPL line number in error		0 to		483,64	7					RO			NC	рт	55
x.40 x.49	User program ID				+32,76		0				RO	Bi		NC		
x.49 x.50	Solutions Module error status*		-32,	0 to 2		•	0				RO		+	NC		
x.50	Solutions Module software sub-	version		0 to 9							RO			NC		
A.01	Control in order of Sub-			0.10							NO	1011	-			
RW F	Read / Write RO Read only	Un	ni Unipolar	Bi	Bi-po	lar	Bit	Bit parameter	Txt	Text string						
	iltered DE Destinatio			RA	-	g dependent	PT	Protected	US	User save	F	s	Powe	er dov	vn sa	ave
				-	1											- '

*See trip SLX.Er, Automation (Applications) module category on page 285.

11.15.4 Fieldbus module category Fi

	Parameter	Ra	inge(‡)		Default(⇔)				Tune
	Parameter	OL	CL	OL	VT	sv	_		Туре
x.01	Solutions Module ID	C	to 599				RO	Uni	
x.02	Solutions Module software version	0.0	0 to 99.99				RO	Uni	NC
x.03	Fieldbus Node Address	(65,535		65,535		RW	Uni	
x.04	Fieldbus Baud Rate	-12	8 to +127		0		RW	Bi	
x.05	Mode	(65,535		4		RW	Uni	
x.06	Fieldbus Diagnostic	:	±9,999				RO	Bi	NC
x.07	Trip Delay Time	0	to 3,000		200		RW	Uni	
x.08	Little endianism select	OFF ((0) or On (1)		On (1)		RW	Bit	
x.09	Register control	OFF ((0) or On (1)		OFF (0)		RW	Bit	
x.10 to x.19	'l' data registers 0 - 9	-32,76	8 to +32,767				RW	Bi	
x.20 to x.29	'O' data registers 0 - 9	-32,76	8 to +32,767				RW	Bi	
x.30	Load Solutions Module defaults	OFF ((0) or On (1)		OFF (0)		RW	Bit	
x.31	Save Solutions Module parameters	OFF ((0) or On (1)		OFF (0)		RW	Bit	
x.32	Request to reinitialise	OFF ((0) or On (1)		OFF (0)		RW	Bit	
x.33	Download from Fieldbus Solutions Module	OFF ((0) or On (1)		OFF (0)		RW	Bit	
x.34	Compression	OFF ((0) or On (1)			RW	Bit		
x.35	Serial number	-2,147,483,64	48 to 2,147,483,647				RO	Bi	NC
x.36 to x.37	Fieldbus specific	OFF ((0) or On (1)		OFF (0)		RW	Bit	
x.38	Fieldbus specific defined mode	C) to 255		0		RW	Uni	
x.39	Cyclic input configuration	C) to 255		0		RW	Uni	
x.40	Cyclic output configuration	C	to 255		0		RW	Uni	
x.41 to x.43	Fieldbus specific	C) to 255		0		RW	Uni	
x.44 to x.48	Fieldbus specific	C) to 255		0		RO	Uni	
x.49	Mapping error status	C) to 255		0		RO	Uni	
x.50	Solutions Module error status*	C) to 255				RO	Uni	NC
x.51	Solutions Module software sub-version	(0 to 99				RO	Uni	NC

FI Filtered DE Destination NC Not cloned RA Rating dependent PT Protected US User save PS Power down sa	RW	Read / Write	RO	Read only	Uni	Unipolar	Bi	Bi-polar	Bit	Bit parameter	Txt	Text string		
	FI	Filtered	DE	Destination	NC	Not cloned	RA	Rating dependent	PT	Protected	US	User save	PS	Power down save

*See trip SLX.Er, Fieldbus module category on page 286.

PT US

NC PT

US US US

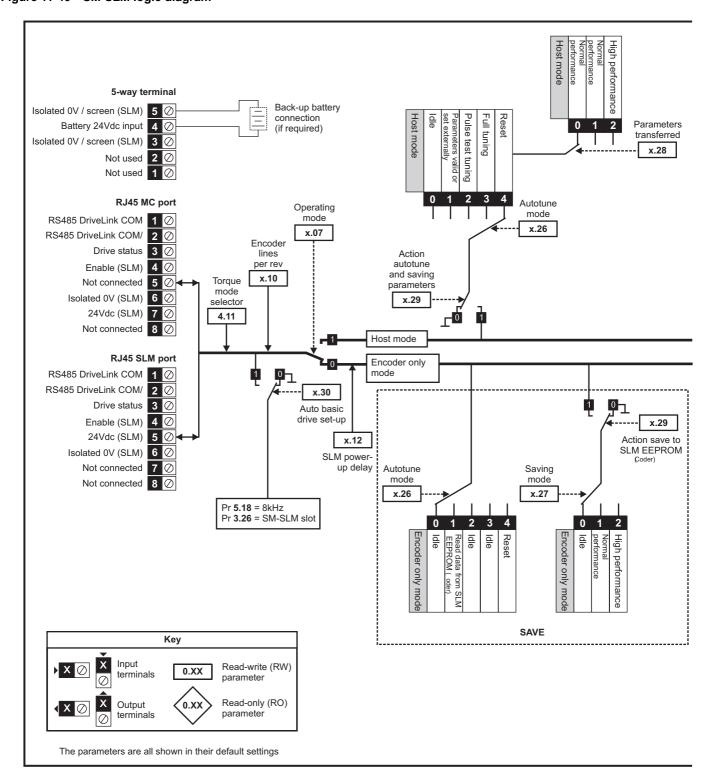
US US US

US US

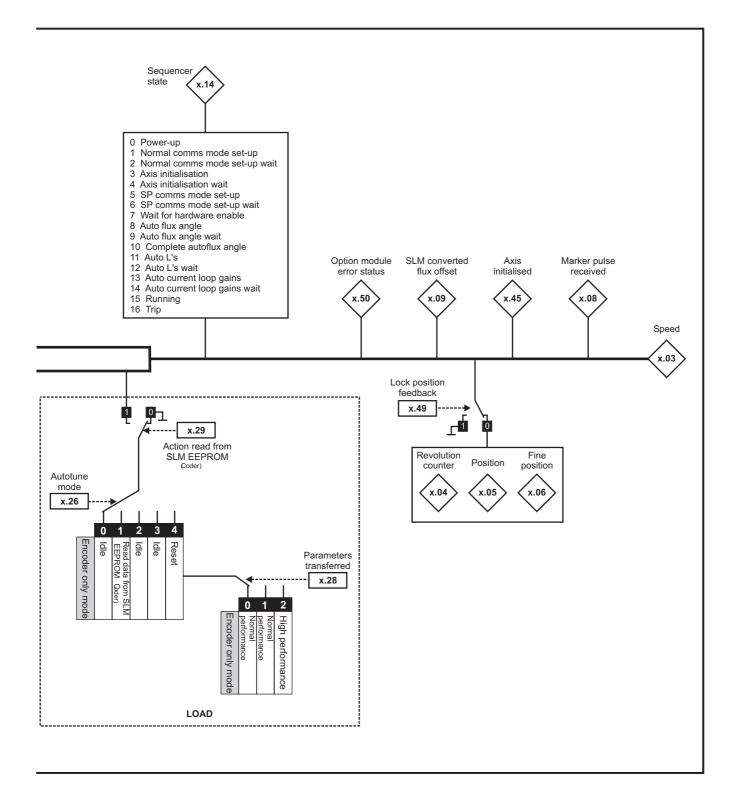
US

US US US US US

NC PT


ΡT

PT NC PT NC PT


								-					
Safety	Product	Mechanical	Electrical	Getting	Basic	Running the	Ontimisation	Smartcard	Onboard	Advanced	Technical	Diagnostica	UL Listing
Information	Information	Installation	Installation	Started	Parameters	motor	Optimisation	operation	PLC	Parameters	Data	Diagnostics	Information

1	Safety	Product	Mechanical	Electrical	Getting	Basic	Running the	Optimisation	Smartcard	Onboard	Advanced	Technical	Diagnostics	UL Listing
	Information	Information	Installation	Installation	Started	Parameters	motor	Optimisation	operation	PLC	Parameters	Data	Diagnostics	Information

11.15.5 SLM module category Figure 11-40 SM-SLM logic diagram

Safety Product Mechanical Electrical Getting Basic Running the Smartcard Onboard Advanced Technic	UL Listing
Information Information Installation Installation Started Parameters motor Optimisation operation PLC Parameters Data	Diagnostics Information
mormation mormation installation installation Stated Farameters motor operation FEC Farameters Data	mormation

Safety Information	Product Information	Mechanical Installation	Electrical Installation	Getting Started	Basic Parameters	Running the motor	Optimisation	Smartcard operation	Onboard PLC	Advanced Parameters	Technical Data	Diagnostics	UL Listing Information

SM-SLM parameters

Parameter OL OL OL VT SV x.61 Solutions Modula ID 0.0 to 99.9 RO Unit NC x.03 Speed .400,000.0 rpm RO Unit IN x.04 Revolution counter 0.0 to 95.95 RO RO IN FN x.04 Revolution counter 0.0 to 55.357 (1/2**Rota d a revolution) RO RO IN FN x.05 Feasion 0.0 to 55.357 (1/2**Rot d a revolution) RO Unit FN NC x.06 Stat converted Infactifitat 0.0 to 55.357 (1/2**Rot d a revolution) RO Unit NC x.00 Stat converted Infactifitat 0.0 to 55.350 (0 0.000 RO Unit NC x.10 Encoderinatificat (fitation 0.0 to 55.350 (0 0.0200 RO Unit NC x.11 Stat solution on the solution 0.0000 to 90.900 0.000 RO Unit NC x.11 Stat solution 0.0000 (1) (1.2500 (2). 0.250 (1) <td< th=""><th></th></td<>	
x02 Solutions Module software version 0.0 to 99.99 RO Uni NC x03 Speed	
x03 Speed = 44,000.0 rpm RO Bit FI NC x04 Revulation counter 0 to 65.535 (ru2 ^{4m} do a revolution) RO Uni FI NC x05 Position 0 to 65.535 (ru2 ^{4m} do a revolution) RO Uni FI NC x06 Fine position 0 to 65.535 (ru2 ^{4m} do a revolution) RO Uni FI NC x08 Marker pulse roeived indicator OFF (0) or On (1) OFF (0) RO Bit NC x09 SLM converted flux Offeet 0 to 65.535 0 RO Uni NC x11 Encoder lines per revolution 0 to 50.000 1024 RW Uni NC x12 SLM power-up delay 0.756 (3), 1.0001 (4, 1.220 (6), 1.220 (1) 0.250 (1) RO Uni NC x13 Not used" NC NC x14 Sequencer status 0 to 16 RO Uni NC x15 Not used" <t< th=""><th>PT US</th></t<>	PT US
x.04 Revolution counter 0 to 66,535 revolutions RO Uni FI NC x.05 Presition 0 to 65,535 (112 ²⁸ /mbs of a revolution) RO Uni FI NC x.06 Fine position 0 to 65,535 (112 ²⁸ /mbs of a revolution) RO Uni FI NC x.08 Mexer pulse received indicator OF(0) or On (1) OFF(0) RO DB NC x.09 SLM converted flux offset 0 to 65,535 0 RO Uni NC x.10 Encoder lines per revolution 0 to 65,050 0 RO Uni NC x.11 SLM converted flux offset 0 to 66,053 0 RO Uni NC x.11 SLM software version 0.000 (0) c0.250 (2) 0.250 (1) RW Txt I x.11 Sku used* 0 1.500 (6) : 0.250 (1) RW Txt I x.12 SLM power-up delay 0.750 (3), 1000 (4), 1250 (5), 1.500 (7) 0.250 (1) RW Txt I	PT
x.05 Position 0 to 65.353 (1/2 ¹⁶ /hs of a revolution) RO Uni FI NC x.06 Fine position 0 to 65.353 (1/2 ²⁶ /hs of a revolution) RO Uni FI NC x.07 Operating mode HoSt (0, Enc.On) (1) HHSt (0, RN Txt Image: Comparison of the	PT
x.07 Operating mode Hos (i), Enc.Only (i) Hos (i) RV Txt I x.07 Operating mode Hos (i), Enc.Only (i) HOS (i) RVH Txt I x.08 Marker pulse received indicator OFF (i) or On (i) OFF (i) or RO RV Viii I x.08 Marker pulse received indicator O to 65,535 0 RO Uni I x.10 Encoder lines per revolution 0 to 65,050 0.2000 RO Uni NC x.11 SLM software version 0.000 (n) 0.250 (n) 0.5000 (l) 0.250 (l) RV Viii NC x.12 SLM power-up delay 0.500 (n) 0.250 (l) 0.5000 (l) 0.250 (l) RV Txt I x.13 Not used* 0 to 16 RO I NC x.14 Sequencer status 0 to 16 RO I NC x.14 Sequencer status 0 to 16 RO I I x.15 Not used* I I I I	PT
x.07 Operating mode HoSt (0), Enc. Only (1) HOSt (0) FW Txt NC x.08 Marker puble received indicator OFF (0) or On (1) OFF (0) RO Uni NC x.10 Encoder lines per revolution 0 to 65,555 0 RO Uni NC x.11 SLM converted flux offset 0 to 65,555 0 RW Uni NC x.14 Sequences trains 0.0000 (0), 0.250 (1), 0.500 (2), 1.500 (6) s 0.250 (1) RW Txt C x.12 SLM power-up delay 0.0760 (3), 1.000 (4), 1.250 (5), 1.500 (6) s 0.250 (1) RW Txt C x.14 Sequences tatus 0 to 16 RO Uni NC x.15 Not used' <td>PT</td>	PT
x.09 Marker pulse received indicator OFF (0) cr 0n (1) OFF (0) RO Bit NC x.09 SLM converted flux offset 0 to 65,535 0 RO Uni Image: Converted flux offset NC x.11 Encoder lines per revolution 0 to 50,000 1024 RW Uni NC x.12 SLM software version 0.000 (0), 250 (1), 500 (2), 0.750 (3), 1.000 (4), 1.250 (5), 1.000 (6) s 0.250 (1) RW Txt Image: Converted flux offset NC x.13 Not used* 1.000 (6) s 0.250 (1) RW Txt Image: Converted flux offset Imag	PT
x.00 SLM converted flux offset 0 to 65,535 0 RC Uni Image: state st	US
x.10 Encoder lines per revolution 0 to 50,000 1024 RW Uni NC x.11 SLM software version 0.000 to 9.399 0.000 RO Uni NC x.12 SLM power-up delay 0.750 (3), 1.000 (4), 1.250 (5), 1.500 (2), 0.250 (1), 0.500 (2), 0.250 (1), 0.500 (2), 0.250 (1) RW Txt Image: constraint of the second constrai	
x.11 SLM software version 0.000 (9), 0.250 (1), 0.500 (2), 0.750 (3), 1.000 (4), 1.250 (5), 1.500 (6) s 0.250 (1) RW Txt x.12 SLM power-up delay 0.000 (9), 0.250 (1), 0.250 (1), 0.250 (1) RW Txt Image: constraint of the second of the s	
x.12 SLM power-up delay 0.000 (0). 0.250 (1). 0.500 (2). 0.750 (3). 1.000 (4). 1.250 (5). 1.500 (6) s 0.250 (1) RW Txt x.13 Not used* 0 to 16 RO Uni NC x.14 Sequencer status 0 to 16 RO Uni NC x.14 Sequencer status 0 to 16 RO Uni NC x.15 Not used* x.16 Not used* x.19 Feedback filter 0 (0), 1 (1), 2 (2), 4 (3), 8 (4), 16 (5) ms 0 (0) RW Txt x.20 Not used* <td>US</td>	US
x.12 SLM power-up delay 0.750 (3), 1.000 (4), 1.250 (5), 1.500 (6) s 0.250 (1) RW Txt Interpret in the status 1.500 (6) s 0.250 (1) RW Txt Interpret in the status 0.160 (1) 1.500 (6) s RO Uni NC x.14 Sequencer status 0 to 16 RO Uni NC NC x.15 Not used* Interpret in the status 0 to 16 Interpret in the status Interpret in the status<	PT
x.14 Sequencer status 0 to 16 RO Uni NC x.15 Not used"	US
x.15 Not used* </td <td></td>	
x.16 Not used* Not used* x.17 Not used* Not used* Not used* x.18 Not used* Not used* Not used* x.19 Feedback filter 0 (0), 1 (1), 2 (2), 4 (3), 8 (4), 16 (5) ms 0 (0) RW Txt Not used* x.20 Not used* Not used* Not used* Not used* Not used* x.21 Not used* Not used* Not used* Not used* Not used* x.22 Not used* Not used* Not used* Not used* Not used* x.24 Not used* Not used* Not used* Not used* Not used* x.25 Autotune mode 0 to 4 0 RW Uni Not used* x.26 Automatic basic drive set-up request 0 to 1 0 RW Uni Not used* x.30 Automatic basic drive set-up request 0 to 1 0 RW Uni Not used* x.33 Not used* Not used* Not used* Not used* Not used* x.33	PT
x.17 Not used* not used* not used* x.18 Not used* 0(0), 1 (1), 2 (2), 4 (3), 8 (4), 16 (5) ms 0 (0) RW Txt x.20 Not used* not used* not used* not used* not used* x.21 Not used* not used* not used* not used* not used* x.22 Not used* not used* not used* not used* not used* x.22 Not used* not used* not used* not used* not used* x.24 Not used* 0 to 4 0 RW Uni not used* x.26 Autotune mode 0 to 2 0 RW Uni not used* x.29 parameters transferred 0 to 2 0 RW Uni not used* x.30 Automatic basic drive set-up request 0 to 1 0 FF (0) RW Wit not used* x.33 Not used* not used* not used* not used* not used* not used* x.34 Not used* not used* not used* not used* not used* not used*	
x.18 Not used* 0 <t< td=""><td></td></t<>	
x.19 Feedback filter 0 (0), 1 (1), 2 (2), 4 (3), 8 (4), 16 (5) ms 0 (0) RW Txt 1 x.20 Not used*	
x.20 Not used* Not 0.00 to 0.00 t	
x.21 Not used* Image: Constraint of the sector of the	US
x.22 Not used* Image: Constraint of the set of th	
x.23 Not used* not used* not used* not used* not used* x.24 Not used* 0 to 4 0 RW Uni not used* x.26 Autotune mode 0 to 2 0 RW Uni not used* x.27 Saving mode 0 to 2 0 RW Uni not used* x.28 Parameters transferred 0 to 2 0 RW Uni not used* x.29 Action the tuning and saving parameters 0FF (0) or On (1) OFF (0) RW Bit not used* x.30 Automatic basic drive set-up request 0 to 1 0 RW Uni not used* x.33 Not used* not used* not used* x.34 Not used* not used* not used* x.35 Not used* not used* x.35 Not used* not used* x.36 Not used*	
x.24 Not used* 0 <t< td=""><td></td></t<>	
x.26 Autotune mode 0 to 4 0 RW Uni x.27 Saving mode 0 to 2 0 RW Uni Image: Constraint of the tuning and saving parameters Action the tuning and saving parameters OFF (0) or On (1) OFF (0) RW Bit Image: Constraint of the tuning and saving parameters x.30 Automatic basic drive set-up request 0 to 1 0 RW Uni Image: Constraint of the tuning and saving parameters x.30 Automatic basic drive set-up request 0 to 1 0 RW Uni Image: Constraint of the tuning and saving parameters x.31 Not used* Image: Constraint of the tuning and saving parameters Image: Constraint of the tuning and saving parameters Image: Constraint of the tuning and saving parameters x.32 Not used* Image: Constraint of the tuning and saving parameters Image: Constraint of the tuning and tuning	
x.27 Saving mode 0 to 2 0 RW Uni Image: constraint of the sector of the s	
x.28 Parameters transferred 0 to 2 0 RW Uni Image: constraint of the transferred parameters from the transferred parameters from the transferred parameters and parameters from the transferred p	US
x.29 Action the tuning and saving parameters OFF (0) or On (1) OFF (0) RW Bit L I x.30 Automatic basic drive set-up request 0 to 1 0 RW Uni L x.32 Not used* 0 0 RW Uni L L x.33 Not used* 0 0 RU L L L x.34 Not used* 0 0 RU L L L x.34 Not used* 0 0 L	US
x.29 parameters OFF (0) of On (1) OFF (0) RW Bit E x.30 Automatic basic drive set-up request 0 to 1 0 RW Uni x.32 Not used* 0 RW Uni x.32 Not used* x.33 Not used*	US
x.32 Not used* Image: Constraint of the second sec	US
x.33 Not used* Image: Constraint of the sector of the sec	US
x.34 Not used* Image: Constraint of the system of the sys	
x.35 Not used* Image: marked back definition of the system of the syste	
x.36 Not used* Image: marked black blac	
x.37 Not used* Image: mark transmission of the system Image: mark transystem Image: mark transmission of th	
x.38 Not used* Image: marked black blac	
x.39 Not used* Image: constraint of the system Image: consthe system Image: constraint of the	
x.40 Not used* Image: marked black blac	
x.41 Not used* Image: Constraint of the system	
x.42 Not used* Image: mark the system Im	
x.43 Not used* Image: Constraint of the system Image: Consystem Image: Constraint of the syst	
x.44 Not used* Image: Constraint of the state of the	
x.45 Axis initialised OFF (0) or On (1) RO Bit Image: Constraint of the state o	
x.46 Not used* Image: Constraint of the state of the	PT
x.47 Not used* Image: Constraint of the sector of the sec	· ·
x.48 Not used* Control Control <thcontrol< th=""> Control <thc< td=""><td></td></thc<></thcontrol<>	
x.49 Lock position feedback OFF (0) or On (1) OFF (0) RW Bit	
	PT
	PT
x.51 Solutions Module software sub- version 0 to 99 RO Uni NC	PT

RW	Read / Write	RO	Read only	Uni	Unipolar	Bi	Bi-polar	Bit	Bit parameter	Txt	Text string		
FI	Filtered	DE	Destination	NC	Not cloned	RA	Rating dependent	PT	Protected	US	User save	PS	Power down save

* Some of the parameters which are not used will be introduced in scheduled product enhancement.

**See trip SLX.Er, SLM module category on page 287.

Safety Product Mechanical Electrical Getting Basic Running the motor Optimisation Smartcard operation C	Onboard Advanced Technical Diagnostics UL Listing Information
---	---

11.16 Menu 18: Application menu 1

	Parameter	Ran	ge(‡)	Default(⇔)				Туре				
	i alametei	OL	CL	OL	VT	SV			ועי	pe		
18.01	Application menu 1 power-down saved integer	-32,768	to +32,767		0		RW	Bi		NC		PS
18.02 to 18.10	Application menu 1 read-only integer	-32,768	to +32,767		0		RO	Bi		NC		
18.11 to 18.30	Application menu 1 read-write integer	-32,768	to +32,767		0		RW	Bi				US
18.31 to 18.50	Application menu 1 read-write bit	OFF (0)	or On (1)		0		RW	Bit				US

11.17 Menu 19: Application menu 2

	Parameter	Ran	ge(≎)					Ту	ne		
	ranneter	OL	CL	OL	VT	SV			ij	pe	
19.01	Application menu 2 power-down saved integer	-32,768	to +32,767		0		RW	Bi		NC	PS
19.02 to 19.10	Application menu 2 read-only integer	-32,768	to +32,767		0		RO	Bi		NC	
19.11 to 19.30	Application menu 2 read-write integer	-32,768	to +32,767		0		RW	Bi			US
19.31 to 19.50	Application menu 2 read-write bit	OFF (0)	or On (1)		0		RW	Bit			US

11.18 Menu 20: Application menu 3

	Parameter	Ran	ge(‡)		Default(⇔)					
	i didilettei	OL	CL	OL	VT	SV		• • •	/pe	
20.01 to 20.20	Application menu 3 read-write integer	-32,768	to +32,767		0		RW E	Si	NC	
	Application menu 3 read-write long integer	-2 ³¹ t	o 2 ³¹ -1		0		RW E	Si	NC	

With software V01.07.00 and later, all menu 20 parameters are transferred to the SMARTCARD when a 4yyy transfer is performed. See section 9.2.1 *Writing to the SMARTCARD* on page 152 for more information.

RW	Read / Write	RO	Read only	Uni	Unipolar	Bi	Bi-polar	Bit	Bit parameter	Txt	Text string		
FI	Filtered	DE	Destination	NC	Not cloned	RA	Rating dependent	PT	Protected	US	User save	PS	Power down save

Safety Information	Product Information	Mechanical Installation	Electrical Installation	Getting Started	Basic Parameters	Running the motor	Optimisation	Smartcard operation	Onboard PLC	Advanced Parameters	Technical Data	Diagnostics	UL Listing Information

11.19 Menu 21: Second motor parameters

	Parameter Range(\$)						Defau	lt(⇔)		Туре							
	Farameter			OL		CL		OL	V	Т	SV			ij	he		
21.01	Maximum reference of	clamp { 0.)2 }*	0 to 3,000.0 Hz	SPEE	D_LIMIT_MAX rpm		R> 50.0 A> 60.0	EUR> 1 USA> 1		3,000.0	RW	Uni				US
21.02	Minimum reference c	lamp { 0.)1 }*	±3,000.0 Hz		ED_LIMIT_MAX rpm			0.0	-		RW	Bi			PT	US
21.03	Reference selector	{0.)5 }*	11. 11.	. ,	Pr (3), PAd (4), Prc (5)	A1.A2 (0)				RW	Txt				US	
21.04	Acceleration rate	{0.	03}*	0.0 to 3,200.0 s/100Hz	0.0	000 to 3,200.000 s/1000rpm		5.0	2.0	00	0.200	RW	Uni				US
21.05	Deceleration rate	{0.	04}*	0.0 to 3200.0 s/100Hz	0.0	000 to 3,200.000 s/1000rpm	1	10.0	2.0	00	0.200	RW	Uni				US
21.06	Rated frequency	{ 0 .	47}*	0 to 3000.0 Hz	TV	VT> 0 to 1250.0Hz			R> 50 A> 60			RW	Uni				US
21.07	Rated current	{ 0	16 }*	0 to RATED	_CURR	ENT_MAX A	Drive rated current (Pr 11.32			11.32)	RW	Uni		RA		US	
21.08	Rated load rpm	{ 0 .	45}*	0 to 180,000 rpm 0.00 to 40,000.00 rpm					EUR> 1,450.00 USA> 1,770.00 3,000.00			RW	Uni				US
21.09	Rated voltage	{ 0	14 }*					200V rating drive: 230V 400V rating drive: EUR> 400V, USA> 460V 575V rating drive: 575V 690V rating drive: 690V			∕, USA> 460V 75V	RW	Uni		RA		US
21.10	Rated power factor	{ 0. 4	43 }*	0.000 to 1.000	VT	> 0.000 to 1.000).85			RW	Uni		RA		US
21.11	Number of motor pole	es { 0. 4	12 }*	Auto to 2	120 pole	e (0 to 60)		Au	to (0)		6 POLE (3)	RW	Txt				US
21.12	Stator resistance	Size 1 to 5: 0.000 to 65.000 Ω Size 6: 0.000 to 65.000 x 10 m Ω						0.0	0		RW	Uni		RA		US	
21.13	Voltage offset			0.0 to 25.0 V				0.0				RW	Uni		RA		US
21.14	Transient inductance	(σL _{s)}		0.000	to 500.	000mH			0.0	00		RW	Uni		RA		US
21.15	.15 Motor 2 active			OFF	(0) or 0	Dn (1)						RO	Bit		NC	PT	
21.16	Thermal time constar	nt { 0. 4	15 }*	0.	0 to 300	0.0		6	39.0		20.0	RW	Uni				US
21.17	Speed controller Kp g	gain { 0.)7 }*		0.000 to 6.5535 rad s ⁻¹				0.010	00	RW	Uni				US	
21.18	Speed controller Ki g	ain { 0.)8 }*		0.00	to 655.35 s/rad s ⁻¹				1.00	0	RW	Uni				US
21.19	Speed controller Kd g	gain { 0.	09}*		0.0	0000 to 0.65535 s ⁻¹ /rad s ⁻¹				0.000	000	RW	Uni				US
21.20	Encoder phase angle	e {0.	13 }*		0.0 t	o 359.9 ° electrical					0.0	RW	Uni				US
21.21	Speed feedback sele	ctor				v (0), SLot1 (1), ot2 (2), SLot3 (3)			drv (0)		0)	RW	Txt				US
21.22	Current controller Kp	gain { 0.	38}*	0	to 30,0	00		20			00V: 150, 690V: 215	RW	Uni				US
21.23	Current controller Ki	gain { 0. :	39 }*	0	to 30,0	00		40			00V: 2,000, 690V: 3,000	RW	Uni				US
21.24	Stator inductance (Ls)			VT> (.00 to 5,000.00 mH			0.0	00		RW	Uni		RA		US
21.25	Motor saturation brea	akpoint 1			VT> 0	to 100% of rated flux			5	0		RW	Uni				US
21.26	Motor saturation brea	akpoint 2				to 100% of rated flux			7	-		RW	Uni				US
21.27	Motoring current limit				-	IT_LIMIT_MAX %		65.0		175.	-	RW	Uni		RA		US
21.28	Regen current limit						165.0 175.0				RW	Uni		RA		US	
21.29	Symmetrical current I)6 }*	0 to MOTOR2_C		IT_LIMIT_MAX %	1	65.0		175.	-	RW	Uni		RA		US
21.30	Motor volts per 1,000	rpm, K _e			-	/> 0 to 10,000 V					98	RW	Uni				US
21.31	Motor pole pitch			0.00	to 655.3	35 mm			0.0	00		RW	Uni				US
RW F	Read / Write RO	Read only	U	ni Unipolar	Bi	Bi-polar	Bit	Bit para	meter	Txt	Text string				_	_	
		Destination	N		RA	Rating dependent	PT	Protect		US	User save	P	S	Pow	er dov	vn s	ave
					101	. adding doportuolit		1 101001	~~	55	2301 0410	1 '	~	. 500	- 401		~**

* The menu 0 references are only valid when the second motor map parameters have been made active by setting Pr **11.45** to 1. (The second motor map only becomes effective when the output stage of the drive is not enabled, i.e. inh, rdY, or trip states.)

When the second motor map parameters are active, the decimal point that is second from the right on the first row of the LED display is on.

Encoder phase angle (servo mode only)

With drive software version V01.08.00 onwards, the encoder phase angles in Pr 3.25 and Pr 21.20 are cloned to the SMARTCARD when using any of the SMARTCARD transfer methods.

With drive software version V01.05.00 to V01.07.01, the encoder phase angles in Pr **3.25** and Pr **21.20** are only cloned to the SMARTCARD when using either Pr **0.30** set to Prog (2) or Pr **xx.00** set to 3yyy.

This is useful when the SMARTCARD is used to back-up the parameter set of a drive but caution should be used if the SMARTCARD is used to transfer parameter sets between drives.

Unless the encoder phase angle of the servo motor connected to the destination drive is known to be the same as the servo motor connected to the source drive, an autotune should be performed or the encoder phase angle should be entered manually into Pr **3.25** (or Pr **21.20**). If the encoder phase angle is incorrect the drive may lose control of the motor resulting in an O.SPd or Enc10 trip when the drive is enabled. With drive software version V01.04.00 and earlier, or when using software version V01.05.00 to V01.07.01 and Pr **xx.00** set to 4yyy is used, then the encoder phase angles in Pr **3.25** and Pr **21.20** are not cloned to the SMARTCARD. Therefore, Pr **3.25** and Pr **21.20** in the destination would not be changed during a transfer of this data block from the SMARTCARD.

Safety Information Product Information Mechanical Installation Electrical Installation Getting Started Basic Parameters Running the motor Optimisation Smartcard operation Onboard PLC	Advanced Technical Diagnostics UL Listing Information
---	---

11.20 Menu 22: Additional Menu 0 set-up

	Par	amete	or.		R	ange(\$)		Defa	ult(⇔)		Туре				
	Fai	amete	51		OL		CL		OL V	/T	SV			iy	he	
22.01	Parameter 0	.31 set	-up		Pr 1.0	00 to Pr	21.51		Pr 1	1.33	•	RW	Ur	ni	PT	US
22.02	2 Parameter 0	.32 set	-up		Pr 1.(10 to Pr	21.51		Pr 1	1.32		RW	Ur	ni	PT	US
22.03	B Parameter 0	.33 set	-up		Pr 1.00 to Pr 21.51				r 6.09 Pr	5.16	Pr 0.00	RW	Ur	ni	PT	US
22.04	Parameter 0	.34 set	-up		Pr 1.00 to Pr 21.51				Pr 11.30					ni	PT	US
22.05	5 Parameter 0	.35 set	-up		Pr 1.00 to Pr 21.51				Pr 11.24					ni	PT	US
22.06	B Parameter 0	.36 set	-up		Pr 1.00 to Pr 21.51				Pr 11.25					ni	PT	US
22.07	Parameter 0	.37 set	-up		Pr 1.(10 to Pr	21.51		Pr 1	1.23		RW	Ur	ni	PT	US
22.10					Pr 1.(10 to Pr	21.51		Pr	5.12		RW	Ur	ni	PT	US
22.11	Parameter 0	.41 set	-up		Pr 1.(10 to Pr	21.51		Pr	5.18		RW	Ur	ni	PT	US
22.18	B Parameter 0	.48 set	-up		Pr 1.00 to Pr 21.51				Pr 1	1.31		RW	Ur	ni	PT	US
22.20	Parameter 0	.50 set	-up		Pr 1.(10 to Pr	21.51		Pr 1	1.29		RW	Ur	ni	PT	US
22.21	Parameter 0	.51 set	-up		Pr 1.(10 to Pr	21.51		Pr	0.00		RW	Ur	ni	PT	US
22.22	2 Parameter 0	.52 set	-up		Pr 1.0	10 to Pr	21.51		Pr	0.00		RW	Ur	ni	PT	US
22.23	B Parameter 0	.53 set	-up		Pr 1.(10 to Pr	21.51		Pr	0.00		RW	Ur	ni	PT	US
22.24	Parameter 0	.54 set	-up		Pr 1.(10 to Pr	21.51		Pr	0.00		RW	Ur	ni	PT	US
22.25	5 Parameter 0	.55 set	-up		Pr 1.(10 to Pr	21.51		Pr	0.00		RW	Ur	ni	PT	US
22.26	B Parameter 0	.56 set	-up		Pr 1.(10 to Pr	21.51		Pr	0.00		RW	Ur	ni	PT	US
22.27	Parameter 0	.57 set	-up		Pr 1.(10 to Pr	21.51		Pr	0.00		RW	Ur	ni	PT	US
22.28	B Parameter 0	.58 set	-up		Pr 1.0	10 to Pr	21.51		Pr	0.00		RW	Ur	ni	PT	US
22.29	Parameter 0	.59 set	-up		Pr 1.(10 to Pr	21.51		Pr	0.00		RW	Ur	ni	PT	US
RW	Read / Write	RO	Read only	Uni	Unipolar	Bi	Bi-polar	Bit	Bit parameter	Txt	Text string					
FI	Filtered	DE	Destination	NC	Not cloned	RA	Rating dependent	PT	Protected	US	User save	F	s	Powe	er down	save

Safety Product Mechanical Electrical Getting Basic Running the motor Optimisal Information Installation Installation Started Parameters motor Optimisal	on Smartcard Onboard Advanced Technical Diagnostics UL Listing Information
--	--

11.21 Advanced features

This section gives information on some of the advanced functions of the Unidrive SP. For additional information see the *Unidrive SP Advanced User Guide*.

Reference modes	Pr 1.14, Pr 1.15 and Pr 8.39
Braking modes	Pr 2.04 and Pr 2.08
S ramps	Pr 2.06 and Pr 2.07
Torque modes	Pr 4.08 and Pr 4.11
Stop modes	Pr 6.01, Pr 6.06, Pr 6.07 and Pr 6.08
Main loss modes	Pr 6.03, Pr 6.48, Pr 4.13 and Pr 4.14
Start/stop logic modes	Pr 6.04 and Pr 6.40
Catch a spinning motor	Pr 6.09 and Pr 5.40
Position loop modes	Pr 13.10

11.21.1 Reference modes

	1.1	4	Refere	ence se	elector					
R١	N	Txt					NC		US	
Û	A1.A2 (0), A1.Pr (2), A2.Pr (2), Pr (3), PAd (4), Prc (5)					⇒		A1.A2	(0)	

1.15 Preset reference selector											
R١	N	Uni						NC		US	
ţ	0 to 9					₽			0		

	8.3	9	T28 ar	nd T29	auto-s	ele	ctio	n			
R۱	N	Bit								US	
¢	OFF (0) or On (1)								OFF (0)	

The setting of Pr **1.14** automatically changes the operation of digital inputs T28 and T29 by configuring the destination parameters Pr **8.25** and Pr **8.26**. To allow Pr **8.25** and Pr **8.26** to be changed manually by the user, the automatic set-up must be disabled by setting Pr **8.39** to 1.

If Pr **8.39** is 0 and Pr **1.14** is changed, then a drive reset is required before the function of terminal T28 or T29 will become active.

Pr 1.14	Pr 1.15	[Digital Input T28		Digital Input T29	Pr 1.49	Pr 1.50	Active Reference
Pr 1.14	Pr 1.15	State	Function	State	Function	Pr 1.49	Pr 1.50	Active Reference
	0 or 1	0	Local Remote			1	1	Analogue input 1
	0 01 1	1	Local Remote			2	1	Analogue input 2
A1.A2 (0)	2 to 8		No function		Jog forward**	1 or 2	2 to 8	Preset reference 2 to 8
A1.A2 (0)		0	Local Remote		Jug lorward	1	1	Analogue input 1
	9 *	1	Local Remote			2	1	Analogue input 2
			No function			1 or 2	2 to 8	Preset reference 2 to 8
		0		0			1	Analogue input 1
	0	1	Preset select bit 0	0	Preset select bit 1		2	Preset reference 2
	0	0	Flesel select bit 0	1	Flesel select bit 1		3	Preset reference 3
A1.Pr (1)		1		1		1	4	Preset reference 4
	1						1	Analogue input 1
	2 to 8		No function		No function		2 to 8	Preset reference 2 to 8
	9 *		NO function				1	Analogue input 1
	3						2 to 8	Preset reference 2 to 8
		0		0			1	Analogue input 2
	0	1	Preset select bit 0	Ū	Preset select bit 1		2	Preset reference 2
	Ū	0	1 10301 301001 bit 0	1			3	Preset reference 3
A2.Pr (2)		1				2	4	Preset reference 4
AZ:I I (Z)	1					2	1	Analogue input 2
	2 to 8		No function		No function		2 to 8	Preset reference 2 to 8
	9 *						1	Analogue input 2
	J						2 to 8	Preset reference 2 to 8
		0		0			1	Preset reference 1
	0	1	Preset select bit 0	Ŭ	Preset select bit 1		2	Preset reference 2
Pr (3)	ŭ	0		1		3	3	Preset reference 3
(0)		1				Ť	4	Preset reference 4
	1 to 8		No function		No function		1 to 8	Preset reference 1 to 8
	9 *						1 to 8	Preset reference 1 to 8
PAd (4)			No function		No function	4		Keypad reference
Prc (5)			No function		No function	5		Precision reference

 Table 11-8
 Active reference

* Setting Pr **1.15** to 9 enables the Preset reference scan timer. With the scan timer enabled the preset references are selected automatically in turn. Pr **1.16** defines the time between each change.

** Jog forward can only be selected when the drive is in either the ready (rdy), inhibit (inh) or trip states.

Safety Product Mechanical Electrical Getting Basic Running the motor Opti Information Installation Installation Started Parameters motor Opti	
---	--

Preset references

Preset references 1 to 8 are contained in Pr 1.21 to Pr 1.28.

Keypad reference

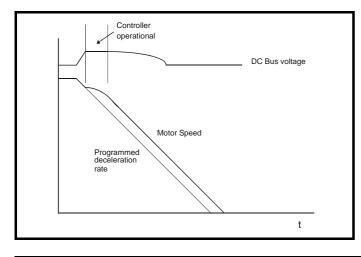
If Keypad reference is selected the drive sequencer is controlled directly by the keypad keys and the keypad reference parameter (Pr **1.17**) is selected. The sequencing bits, Pr **6.30** to Pr **6.34**, and Pr **6.37** have no effect and jog is disabled.

Precision reference

If Precision reference is selected the speed reference is given Pr **1.18** and Pr **1.19**.

11.21.2 Braking Modes

	2.04 Ramp mode select										
R۱	Ν	Txt								US	
OL	Û	F	ASt (0) Std.h),	⇔	Std (1)				
CL		F)								


This parameter does not affect the acceleration ramp, as the ramp output always rises at the programmed acceleration rate subject to the current limits. It is possible in under some unusual circumstances in open-loop mode (i.e. highly inductive supply) for the motor to reach a low speed in standard ramp mode, but not completely stop. It is also possible if the drive attempts to stop the motor with an overhauling load in any mode that the motor will not stop when standard ramp mode or fast ramp mode is used. If the drive is in the deceleration state the rate of fall of the frequency or speed is monitored. If this does not fall for 10 seconds the drive forces the frequency or the speed reference to zero. This only applies when the drive is in the deceleration state and not when the reference is simply set to zero.

0: Fast ramp

Fast ramp is used where the deceleration follows the programmed deceleration rate subject to current limits.

1: Standard ramp

Standard ramp is used. During deceleration, if the voltage rises to the standard ramp level (Pr **2.08**) it causes a controller to operate, the output of which changes the demanded load current in the motor. As the controller regulates the link voltage, the motor deceleration increases as the speed approaches zero speed. When the motor deceleration rate reaches the programmed deceleration rate the controller ceases to operate and the drive continues to decelerate at the programmed rate. If the standard ramp voltage (Pr **2.08**) is set lower than the nominal DC Bus level the drive will not decelerate the motor, but it will coast to rest. The output of the ramp controller (when active) is a current demand that is fed to the frequency changing current controller (Open-loop modes) or the torque producing current controller (Closed-loop vector or Servo modes). The gain of these controllers can be modified with Pr **4.13** and Pr **4.14**.

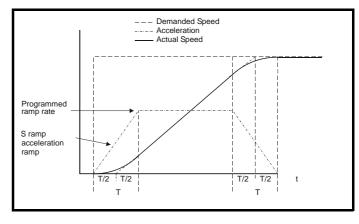
2: Standard ramp with motor voltage boost

This mode is the same as normal standard ramp mode except that the motor voltage is boosted by 20%. This increases the losses in the motor giving faster deceleration.

	2.0	8	Standa	ard rar	np volt	age	;				
R١	Ν	Uni		RA						US	
≎	D	C_VOL	0 to TAGE_		IAX V	Û		400V 57	0V driv drive: E U 5V driv 0V drive	UR> 7 JSA> 7 e: 895	

This voltage is used as the control level for standard ramp mode. If this parameter is set too low the machine will coast to rest, and if it is set too high and no braking resistor is used the drive may give an over-volt 'OV' trip. The minimum level should be greater than the voltage produced on the DC Bus by the highest supply voltage. Normally the DC Bus voltage will be approximately the rms supply line voltage $x \sqrt{2}$.

Care should be taken in the setting of this parameter. It is recommended that the setting should be at least 50V higher than the maximum expected level of the DC Bus voltage. If this is not done, the motor may fail to decelerate on a STOP command.


11.21.3 S ramps

	2.0	06	S ram	p enab	le					
R۱	N	Bit							US	
ţ		OF	F (0) or	On (1)		₽		OFF (0)	

Setting this parameter enables the S ramp function. S ramp is disabled during deceleration using standard ramp. When the motor is accelerated again after decelerating in standard ramp the acceleration ramp used by the S ramp function is reset to zero.

	2.0)7	S ram	p acce	leratio	n lir	nit			
R۱	N	Uni							US	
OL			0.0 to s ² /10					3.1		
VT	Û	0	.000 to		00	⇔		1.50	0	
sv			s ² /100	00rpm				0.03	0	

This parameter defines the maximum rate of change of acceleration/ deceleration. The default values have been chosen such that for the default ramps and maximum speed, the curved parts of the S will be 25% of the original ramp if S ramp is enabled.

Unidrive SP User Guide Issue Number: 11

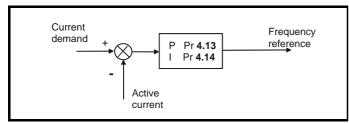
Safety Information	Product Information	Mechanical Installation	Electrical Installation	Getting Started	Basic Parameters	Running the motor	Optimisation	Smartcard operation	Onboard PLC	Advanced Parameters	Technical Data	Diagnostics	UL Listing Information
-----------------------	------------------------	----------------------------	----------------------------	--------------------	---------------------	----------------------	--------------	---------------------	----------------	------------------------	-------------------	-------------	---------------------------

Since the ramp rate is defined in s/100Hz or s/1000rpm and the S ramp parameter is defined in $s^2/100$ Hz or $s^2/100$ rpm, the time T for the 'curved' part of the S can be determined from:

T = S ramp rate of change / Ramp rate

Enabling S ramp increases the total ramp time by the period T since an additional T/2 is added to each end of the ramp in producing the S.

11.21.4 Torque modes


	4.(08	Torqu	e refer	ence					
R١	Ν	Bi							US	
ţ	±l	JSER_	CURRE	ENT_M	AX %	₽		0.00)	

Parameter for main torque reference. The normal update rate for the torque reference is 4ms. However if analogue inputs 2 or 3 on the drive are used as the source of the reference, the drive is in closed-loop vector or servo mode and the analogue inputs are in voltage mode with zero offset, the sample time is reduced to $250\mu s$.

	4.1	1	Torqu	e mod	e selec	tor				
R١	N	Uni							US	
OL	☆		0 to	o 1		ц,		0		
CL	₹5		0 to	o 4		~		0		

Open loop

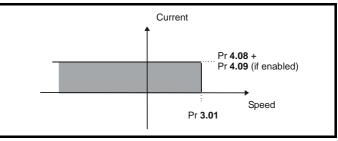
If this parameter is 0 normal frequency control is used. If this parameter is set to 1 the current demand is connected to the current PI controller giving closed loop torque/current demand as shown below. The current error is passed through proportional and integral terms to give a frequency reference which is limited to the range: -SPEED_FREQ_MAX to +SPEED_FREQ_MAX.

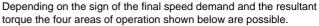
Closed loop vector and Servo

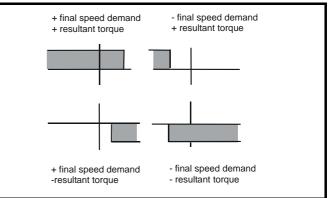
When this parameter is set to 1, 2 or 3 the ramps are not active whilst the drive is in the run state. When the drive is taken out of the run state, but not disabled, the appropriate stopping mode is used. It is recommended that coast stopping or stopping without ramps are used. However, if ramp stop mode is used the ramp output is pre-loaded with the actual speed at the changeover point to avoid unwanted jumps in the speed reference.

0: Speed control mode

The torque demand is equal to the speed loop output.


1: Torque control


The torque demand is given by the sum of the torque reference and the torque offset, if enabled. The speed is not limited in any way, however, the drive will trip at the overspeed threshold if runaway occurs.


2: Torque control with speed override

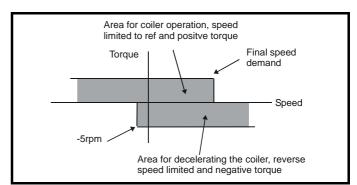
The output of the speed loop defines the torque demand, but is limited between 0 and the resultant torque reference (Pr **4.08** and Pr **4.09** (if enabled)). The effect is to produce an operating area as shown below if the final speed demand and the resultant torque reference are both positive. The speed controller will try and accelerate the machine to the final speed demand level with a torque demand defined by the resultant torque reference. However,

the speed cannot exceed the reference because the required torque would be negative, and so it would be clamped to zero.

This mode of operation can be used where torque control is required, but the maximum speed must be limited by the drive.

3: Coiler/uncoiler mode

Positive final speed demand:

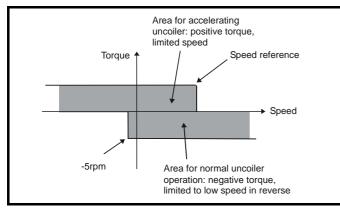

A positive resultant torque will give torque control with a positive speed limit defined by the final speed demand. A negative resultant torque will give torque control with a negative speed limit of -5rpm.

Negative final speed demand:

A negative resultant torque will give torque control with a negative speed limit defined by the final speed demand. A positive resultant torque will give torque control with a positive speed limit of +5rpm.

Example of coiler operation:

This is an example of a coiler operating in the positive direction. The final speed demand is set to a positive value just above the coiler reference speed. If the resultant torque demand is positive the coiler operates with a limited speed, so that if the material breaks the speed does not exceed a level just above the reference. It is also possible to decelerate the coiler with a negative resultant torque demand. The coiler will decelerate down to -5rpm until a stop is applied. The operating area is shown in the following diagram.



Example of uncoiler operation:

This is an example for an uncoiler operating in the positive direction. The final speed demand should be set to a level just above the maximum normal speed. When the resultant torque demand is negative the uncoiler will apply tension and try and rotate at 5rpm in reverse, and so

Ir	Safety nformation	Product Information	Mechanical Installation	Electrical Installation	Getting Started	Basic Parameters	Running the motor	Optimisation	Smartcard operation	Onboard PLC	Advanced Parameters	Technical Data	Diagnostics	UL Listing Information
									-					

take up any slack. The uncoiler can operate at any positive speed applying tension. If it is necessary to accelerate the uncoiler a positive resultant torque demand is used. The speed will be limited to the final speed demand. The operating area is the same as that for the coiler and is shown below:

4: Speed control with torque feed-forward

The drive operates under speed control, but a torque value may be added to the output of the speed controller. This can be used to improve the regulation of systems where the speed loop gains need to be low for stability.

11.21.5 Stop modes

	6.0)1	Stop r	node					
R۱	Ν	Txt						US	
OL	Û		St (0), ı dcl (3) diSAb	, td.dcl			rP (1)	
VT	v	C	OASt ((, ,	1),				
sv			no.rl	P (2)			no.rP	(2)	

Open-loop

Stopping is in two distinct phases: decelerating to stop, and stopped.

Ctownin -			
Stopping Mode	Phase 1	Phase 2	Comments
0: Coast	Inverter disabled	Drive cannot be re-enabled for 1s	Delay in phase 2 allows rotor flux to decay
1: Ramp	Ramp down to zero frequency	Wait for 1s with inverter enabled	
2: Ramp followed by DC injection	Ramp down to zero frequency	Inject DC at level specified by Pr 6.06 for time defined by Pr 6.07	
3: DC injection with zero speed detection	Low frequency current injection with detection of low speed before next phase	Inject DC at level specified by Pr 6.06 for time defined by Pr 6.07	The drive automatically senses low speed and therefore it adjusts the injection time to suit the application. If the injection current level is too small the drive will not sense low speed (normally a minimum of 50-60% is required).
4: Timed DC injection braking stop	Inject DC at level specified by Pr 6.06 for time specified by Pr 6.07		
5: Disable	Inverter disabled		Allows the drive to be immediately disabled and then re-enabled again immediately if required.

Once modes 3 or 4 have begun the drive must go through the ready state before being restarted either by stopping, tripping or being disabled.

If this parameter is set to DiASbLE (5), the disable stopping mode is used when the run command is removed. This mode will allow the drive to be started immediately by re-applying the run command. However, if the drive is disabled by removing the drive enable (i.e. via the Secure Disable input or Pr **6.15** *Drive enable*) then the drive cannot be reenabled for 1s.

Closed-loop vector and Servo

Only one stopping phases exists and the ready state is entered as soon as the single stopping action is complete.

Stopping Mode	Action
0: Coast	Inhibits the inverter
1: Ramp	Stop with ramp
2: No ramp	Stop with no ramp

Diagnostics	Safety Information	Product Information	Mechanical Installation	Electrical Installation	Getting Started	_	Running the motor	Optimisation	Smartcard operation	Onboard PLC	Advanced Parameters		Diagnostics	UL Listing Information
-------------	-----------------------	------------------------	----------------------------	----------------------------	--------------------	---	-------------------	--------------	---------------------	----------------	------------------------	--	-------------	---------------------------

The motor can be stopped with position orientation after stopping. This mode is selected with the position controller mode parameter (Pr **13.10**). When this mode is selected Pr **6.01** has no effect.

	6.0)6	Injecti	on bra	king le	vel				
R١	N	Uni					RA		US	
OL	ţ		0.0 to 1	50.0 %)	₽		100.	0	

Defines the current level used during DC injection braking as a percentage of motor rated current as defined by Pr **5.07**.

	6.0)7	Injection braking time								
R١	RW Uni									US	
OL	ţ	0.0 to 25.0 s				⇔			1.0		

Defines the time of injection braking during phase 1 with stopping modes 3 and 4, and during phase 2 with stopping mode 2 (see Pr **6.01**).

	6.0	8	Hold z	Hold zero speed								
R١	Ν	Bit					US					
OL							OFF (0)					
VT	\hat{v}	0	FF (0)	or On (On (1)	⇔						
sv							On (1)					

When this bit is set the drive remains active even when the run command has been removed and the motor has reached standstill. The drive goes to the 'StoP' state instead of the 'rdy' state.

11.21.6 Mains loss modes

	6.0)3	Mains	loss n	node					
R۱	RW Txt						-		US	
Û	diS (0), StoP (1), ridE.th (2)					Û		diS (0)	

0: diS

There is no mains loss detection and the drive operates normally only as long as the DC Bus voltage remains within specification (i.e. >Vuu). Once the voltage falls below Vuu an under-voltage 'UV' trip occurs. This will reset itself if the voltage rises above Vuu Restart, as stated in the table below.

1: StoP - Open-loop

The action taken by the drive is the same as for ride through mode, except the ramp down rate is at least as fast as the deceleration ramp setting and the drive will continue to decelerate and stop even if the mains is re-applied. If normal or timed injection braking is selected the drive will use ramp mode to stop on loss of the supply. If ramp stop followed by injection braking is selected, the drive will ramp to a stop and then attempt to apply dc injection. At this point, unless the mains has been restored, the drive is likely to initiate a trip.

1: StoP - Closed-loop vector or Servo

The speed reference is set to zero and the ramps are disabled allowing the drive to decelerate the motor to a stop under current limit. If the mains is re-applied whilst the motor is stopping any run signal is ignored until the motor has stopped. If the current limit value is set very low level the drive may trip UV before the motor has stopped.

2: ridE.th

The drive detects mains loss when the DC Bus voltage falls below Vml_1 . The drive then enters a mode where a closed-loop controller attempts to hold the DC Bus level at Vml_1 . This causes the motor to decelerate at a rate that increases as the speed falls. If the mains is re-applied it will force the DC Bus voltage above the detection threshold Vml_3 and the drive will continue to operate normally. The output of the mains loss controller is a current demand that is fed into the current control system and therefore the gain Pr **4.13** and Pr **4.14** must be set up for optimum control. See parameters Pr **4.13** and Pr **4.14** for set-up details.

The following table shows the voltage levels used by drives with each voltage rating.

Voltage level	200V drive	400V drive	575V drive	690V drive			
Vuu	175	330	435				
Vml ₁	205*	410*	540*				
Vml ₂	Vml ₁ - 10V	Vml ₁ - 20V	Vml ₁	- 25V			
Vml ₃	Vml ₁ + 10V	Vml ₁ + 15V	Vml ₁	+ 50V			
Vuu Restart	215	425	590				

 * Vml_1 is defined by Pr **6.48**. The values in the table above are the default values.

	6.4	8	Mains loss ride through detection level									
R۱	N	Uni						RA		US		
OL	\hat{v}		0	to		⇔		200V drive: 205 400V drive: 410				
CL	€	DC_V	0 to DC_VOLTAGE_SET_MAX V					57	5V driv 5V driv 0V driv	e: 540		

The mains loss detection level can be adjusted using this parameter. If the value is reduced below the default value, the default value is used by the drive. If the level is set too high, so that the mains loss detection becomes active under normal operating conditions, the motor will coast to a stop.

	4.1	3	Current loop P gain										
R۱	N	Uni								US			
OL	$\hat{\mathbb{T}}$					₽		All voltage ratings: 20					
CL	€		0 to 3	0,000		Ŷ		40 57	00V driv 0V driv 5V driv 0V driv	e: 150 e: 180			

	4.1	4	Curre	nt loop	l gain						
R١	N	Uni							US		
OL	\hat{v}					⇒	All voltage ratings: 40				
CL	ţ		0 to 3	0,000		Ŷ	400 575)V drive)V drive 5V drive)V drive	: 2,000 : 2,400		

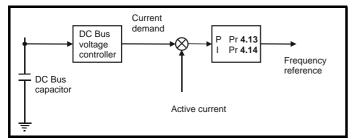
Open-loop

These parameters control the proportional and integral gains of the current controller used in the open loop drive. As already mentioned the current controller either provides current limits or closed loop torque control by modifying the drive output frequency. The control loop is also used in its torque mode during mains loss, or when the controlled mode standard ramp is active and the drive is decelerating, to regulate the flow of current into the drive. Although the default settings have been chosen to give suitable gains for less demanding applications it may be necessary for the user to adjust the performance of the controller. The following is a guide to setting the gains for different applications.

Current limit operation:

The current limits will normally operate with an integral term only, particularly below the point where field weakening begins. The proportional term is inherent in the loop. The integral term must be increased enough to counter the effect of the ramp which is still active even in current limit. For example, if the drive is operating at constant frequency and is overloaded the current limit system will try

Safety	Product	Mechanical	Electrical	Getting	Basic	Running the	Optimisation	Smartcard	Onboard	Advanced	Technical	Diagnostics	UL Listing
Information	Information	Installation	Installation	Started	Parameters	motor	Optimisation	operation	PLC	Parameters	Data	Diagnostics	Information


to reduce the output frequency to reduce the load. At the same time the ramp will try to increase the frequency back up to the demand level. If the integral gain is increased too far the first signs of instability will occur when operating around the point where field weakening begins. These oscillations can be reduced by increasing the proportional gain. A system has been included to prevent regulation because of the opposite actions of the ramps and the current limit. This can reduce the actual level that the current limit becomes active by 12.5%. This still allows the current to increase up to the current limit set by the user. However the current limit flag (Pr **10.09**) could become active up to 12.5% below the current limit depending on the ramp rate used.

Torque control:

Again the controller will normally operate with an integral term only, particularly below the point where field weakening begins. The first signs of instability will appear around base speed, and can be reduced by increasing the proportional gain. The controller can be less stable in torque control mode rather than when it is used for current limiting. This is because load helps to stabilise the controller, and under torque control the drive may operate with light load. Under current limit the drive is often under heavy load unless the current limits are set at a low level.

Mains loss and controlled standard ramp:

The DC bus voltage controller becomes active if mains loss detection is enabled and the drive supply is lost or controlled standard ramp is being used and the machine is regenerating. The DC bus controller attempts to hold the DC bus voltage at a fixed level by controlling the flow of current from the drive inverter into its DC bus capacitors. The output of the DC bus controller is a current demand which is fed into the current PI controller as shown in the following diagram.

Although it is not usually necessary the DC bus voltage controller can be adjusted with Pr **5.31**. However, it may often be necessary to adjust the current controller gains to obtain the required performance. If the gains are not suitable it is best to set up the drive in torque control first. Set the gains to a value that does not cause instability around the point at which field weakening occurs. Then revert back to open loop speed control in standard ramp mode. To test the controller the supply should be removed whilst the motor is running. It is likely that the gains can be increased further if required because the DC bus voltage controller has a stabilising effect, provided that the drive is not required to operate in torque control mode.

Closed-loop vector and Servo

The Kp and Ki gains are used in the voltage based current controller. The default values give satisfactory operation with most motors. However it may be necessary to change the gains to improve the performance. The proportional gain (Pr **4.13**) is the most critical value in controlling the performance. Either the value can be set by auto-tuning (see Pr **5.12**) or it can be set by the user so that

Pr **4.13** = Kp = (L / T) x (
$$I_{fs}$$
 / V_{fs}) x (256 / 5)

Where:

T is the sample time of the current controllers. The drive compensates for any change of sample time, and so it should be assumed that the sample time is equivalent to the lowest sample rate of $167\mu s$.

L is the motor inductance. For a servo motor this is half the phase to phase inductance that is normally specified by the manufacturer. For an induction motor this is the per phase transient inductance (σL_s). This is the inductance value stored in Pr **5.24** after the autotune test is carried out. If σL_s cannot be measured it can be calculated from the steady state per-phase equivalent circuit of the motor as follows:

$$\sigma \mathbf{L}_{\mathbf{s}} = \mathbf{L}_{\mathbf{s}} - \left(\frac{\mathbf{L}_{\mathbf{m}}^{2}}{\mathbf{L}_{\mathbf{r}}}\right)$$

 I_{fs} is the peak full scale current feedback = K_C x $\sqrt{2}$ / 0.45. Where K_C is defined in Table 11-5 and Table 11-6.

 $V_{\mbox{\scriptsize fs}}$ is the maximum DC Bus voltage.

Therefore:

Pr **4.13** = Kp = (L / 167µs) x (K_C x
$$\sqrt{2}$$
 / 0.45 / V_{fs}) x (256 / 5) = K x L x K_C

Where:

 $K = [\sqrt{2} / (0.45 \times V_{fs} \times 167 \mu s)] \times (256 / 5)$

Drive voltage rating	Vfs	к
200V	415V	2322
400V	830V	1161
575V	990V	973
690V	1190V	951

This set-up will give a step response with minimum overshoot after a step change of current reference. The approximate performance of the current controllers will be as given below. The proportional gain can be increased by a factor of 1.5 giving a similar increase in bandwidth, however, this gives at step response with approximately 12.5% overshoot.

Switching frequency kHz	Current control sample time µs	Gain bandwidth Hz	Phase delay μs
3	167	TBA	1160
4	125	TBA	875
6	83	TBA	581
8	125	TBA	625
12	83	TBA	415
16	125	TBA	625

The integral gain (Pr 4.14) is less critical and should be set so that

Pr **4.14** = Ki = Kp x 256 x T /
$$\tau_m$$

Where:

 τ_m is the motor time constant (L / R).

R is the per phase stator resistance of the motor (i.e. half the resistance measured between two phases).

Therefore

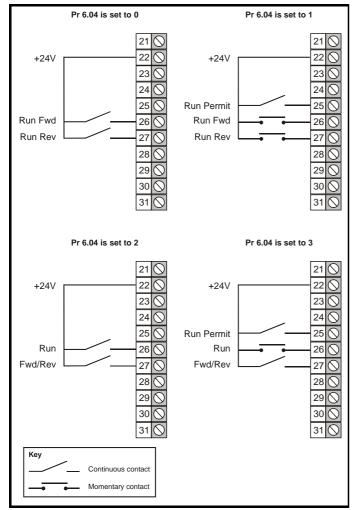
Pr **4.14** = Ki = (K x L x K_C) x 256 x 167 μ s x R / L = 0.0427 x K x R x K_C

The above equation gives a conservative value of integral gain. In some applications where it is necessary for the reference frame used by the drive to dynamically follow the flux very closely (i.e. high speed closed-loop induction motor applications) the integral gain may need to have a significantly higher value.

11.21.7 Start / stop logic modes

	6.0	4	Start /	stop le	ogic se	lec	t			
R۱	N	Uni							US	
Û	0 to 4					Û		0		

This parameter is provided to allow the user to select several predefined digital input routing macros to control the sequencer. When a value between 0 and 3 is selected the drive processor continuously updates


Safety Product Mechanical Electrical Getting Basic Running the motor Optimisation Smartcard Operation	Onboard Advanced Technical Diagnostics UL Listing Information
--	---

the destination parameters for digital I/O T25, T26 and T27, and the enable sequencer latching bit (\Pr **6.40**). When a value of 4 is selected the destination parameters for these digital I/O and \Pr **6.40** can be modified by the user.

If Pr **6.04** is changed then a drive reset is required before the function of T25, T26 or T27 will become active.

Pr 6.04	T25	T26	T27	Pr 6.40
0	No Function	Pr 6.30 (Run Forward)	Pr 6.32 (Run Reverse)	0 (Non Latching)
1	Pr 6.39 (Run Permit)	Pr 6.30	Pr 6.32 (Run Reverse)	(Latching)
2	No Function	Pr 6.34 (Run)	Pr 6.33 (Fwd/Rev)	0 (Non Latching)
3	Pr 6.39 (Run Permit)	Pr 6.34 (Run)	Pr 6.33 (Fwd/Rev)	1 (Latching)
4	User programmable	User programmable	User programmable	User programmable

Figure 11-41	Digital input connections when Pr 6.04 is set
	to 0 to 3

	6.4	10	Enable sequencer latching									
R١	W Bit									US		
$\hat{\mathbb{Q}}$	OFF (0) or On (1)				⇔			OFF (0)			

This parameter enables sequencer latching. When sequencer latching is used, a digital input must be used as a run permit or not stop input. The digital input should write to Pr **6.39**. The run permit or not stop input must

be made active to allow the drive to run. Making the run permit or not stop input inactive resets the latch and stops the drive.

11.21.8 Catch a spinning motor

	6.0	9	Catch	a spin	ning m	oto	r			
R۱	N	Uni							US	
OL	☆		0 to 3					0		
CL	Ŷ		0 te	o 1		~		1		

Open-loop

When the drive is enabled with this parameter at zero, the output frequency starts at zero and ramps to the required reference. When the drive is enabled with this parameter at a non-zero value, the drive performs a start-up test to determine the motor speed and then sets the initial output frequency to the synchronous frequency of the motor.

The test is not carried out and the motor frequency starts at zero if one of the following is true.

- The run command is given when the drive is in the stop state
- The drive is first enabled after power-up with Ur_I voltage mode (Pr 5.14 = Ur_I).
- The run command is given with Ur_S voltage mode (Pr 5.14 = Ur_S).

With default parameters the length of the test is approximately 250ms, however, if the motor has a long rotor time constant (usually large motors) it may be necessary to extend the test time. The drive will do this automatically if the motor parameters including the rated load rpm are set up correctly for the motor.

For the test to operate correctly it is important that the stator resistance (Pr **5.17** or Pr **21.12**) is set up correctly. This applies even if fixed boost (Pr **5.14** = Fd) or square law (Pr **5.14** = SrE) voltage mode is being used. The test uses the rated magnetising current of the motor during the test, therefore the rated current (Pr **5.07**, Pr **21.07** and Pr **5.10**, Pr **21.10**) and power factor should be set to values close to those of the motor, although these parameters are not as critical as the stator resistance. For larger motors it may be necessary to increase Pr **5.40** *Spin start boost* from its default value of 1.0 for the drive to successfully detect the motor speed.

It should be noted that a stationary lightly loaded motor with low inertia might move slightly during the test. The direction of the movement is undefined. Restrictions may be placed on the direction of this movement and on the frequencies detected by the drive as follows:

06.09	Function
0	Disabled
1	Detect all frequencies
2	Detect positive frequencies only
3	Detect negative frequencies only

Closed-loop vector and Servo

When the drive is enabled with this bit at zero, the post ramp reference (Pr **2.01**) starts at zero and ramps to the required reference. When the drive is enabled with this bit at one, the post ramp reference is set to the motor speed.

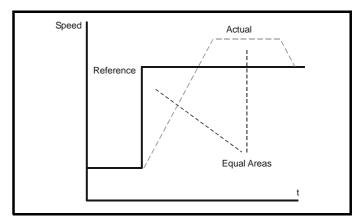
When closed-loop vector mode is used without position feedback, and catch a spinning motor is not required, this parameter should be set to zero as this avoids unwanted movement of the motor shaft when zero speed is required. When closed-loop vector mode without position feedback is used with larger motors it may be necessary to increase Pr **5.40** *Spin start boost* from its default value of 1.0 for the drive to successfully detect the motor speed.

Safety Information	Product Information	Mechanical Installation	Electrical Installation	Getting Started	Basic Parameters	Running the motor	Optimisation	Smartcard operation	Onboard PLC	Advanced Parameters	Technical Data	Diagnostics	UL Listing Information
-----------------------	------------------------	----------------------------	----------------------------	--------------------	---------------------	-------------------	--------------	---------------------	----------------	------------------------	-------------------	-------------	---------------------------

	5.4	0	0 Spin start boost										
R١	Ν	Uni								US			
OL	☆		0.0 to	10.0		亡			1.0				
VT	Ŷ		0.010		~	1.0							

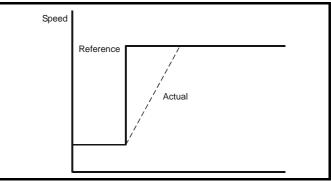
If Pr **6.09** is set to enable the catch a spinning motor function in openloop mode or closed-loop vector mode without position feedback, (Pr **3.24** = 1 or 3) this parameter defines a scaling function used by the algorithm that detects the speed of the motor. It is likely that for smaller motors the default value of 1.0 is suitable, but for larger motors this parameter may need to be increased. If the value of this parameter is too large the motor may accelerate from standstill when the drive is enabled. If the value of this parameter is too small the drive will detect the motor speed as zero even if the motor is spinning.

11.21.9 Position modes


	13.	10	Positi	on con	troller	moo	de			
R۱	Ν	Uni							US	
OL	介		0 to	o 2		⇔		0		
CL			0 to	o 6		~		0		

This parameter is used to set the position controller mode as shown in the table below.

Parameter value	Mode	Feed forward active
0	Position controller disabled	
1	Rigid position control	✓
2	Rigid position control	
3	Non-rigid position control	✓
4	Non-rigid position control	
5	Orientation on stop	
6	Orientation on stop and when drive enabled	


Rigid position control

In rigid position control the position error is always accumulated. This means that, if for example, the slave shaft is slowed down due to excessive load, the target position will eventually be recovered by running at a higher speed when the load is removed.

Non-rigid position control

In non-rigid position control the position loop is only active when the 'At Speed' condition is met (see Pr **3.06**). This allows slippage to occur while the speed error is high.

Velocity feed forward

The position controller can generate a velocity feed forwards value from the speed of the reference encoder. The feed-forwards value is passed to menu, and so ramps may be included if required. Because the position controller only has a proportional gain, it is necessary to use

Safety	Product	Mechanical	Electrical	Getting	_	Running the	Optimisation	Smartcard	Onboard	Advanced	Technical	Diagnostics	UL Listing
Information	Information	Installation	Installation	Started	Parameters	motor	- p	operation	PLC	Parameters	Data	g	Information

velocity feed-forwards to prevent a constant position error that would be proportional to the speed of the reference position.

If for any reason the user wishes to provide the velocity feed forward from a source other than the reference position, the feed forward system can be made inactive, i.e. Pr 13.10 = 2 or 4. The external feed forward can be provided via Menu 1 from any of the frequency/speed references. However, if the feed forward level is not correct a constant position error will exist.

Relative jogging

If relative jogging is enabled the feedback position can be made to move relative the reference position at the speed defined by Pr **13.17**.

Orientation

If Pr **13.10** is 5 the drive orientates the motor following a stop command. If hold zero speed is enabled (Pr **6.08** = 1) the drive remains in position control when orientation is complete and hold the orientation position. If hold zero speed is not enabled the drive is disabled when orientation is complete.

If Pr **13.10** is 6 the drive orientates the motor following a stop command and whenever the drive is enabled provided that hold zero speed is enabled (Pr **6.08** = 1). This ensures that the spindle is always in the same position following the drive being enabled.

When orientating from a stop command the drive goes through the following sequence:

- 1. The motor is decelerated or accelerated to the speed limit programmed in Pr **13.12**, using ramps if these are enabled, in the direction the motor was previously running.
- 2. When the ramp output reaches the speed set in Pr **13.12**, ramps are disabled and the motor continues to rotate until the position is found to be close to the target position (i.e. within 1/32 of a revolution). At this point the speed demand is set to 0 and the position loop is closed.
- 3. When the position is within the window defined by Pr **13.14**, the orientation complete indication is given in Pr **13.15**.

The stop mode selected by Pr **6.01** has no effect if orientation is enabled.

Safety	Product	Mechanical	Electrical	Getting	Basic	Running the	Optimisation	Smartcard	Onboard	Advanced	Technical	Diagnostics	UL Listing
Information	Information	Installation	Installation	Started	Parameters	motor	Optimisation	operation	PLC	Parameters	Data	Diagnostics	Information

12 Technical Data

12.1 Drive

12.1.1 Power and current ratings (Derating for switching frequency and temperature)

For a full explanation of 'Normal Duty' and 'Heavy Duty' refer to section 2.1 *Ratings* on page 11.

Table 12-1 Maximum permissible continuous output current @ 40°C (104°F) ambient for wall mounted drives

				Norn	nal Duty							Hea	avy Duty	/		
Model	Nom rati						us output ng frequei			ninal ing					ous output ng freque	
	kW	hp	3kHz	4kHz	6kHz	8kHz	12kHz	16kHz	kW	hp	3kHz	4kHz	6kHz	8kHz	12kHz	16kHz
SP1201	1.1	1.5				5.2			0.75	1.0				4.3		
SP1202	1.5	2.0				6.8			1.1	1.5				5.8		
SP1203	2.2	3.0			9	9.6			1.5	2.0				7.5		
SP1204	3.0	3.0			1	1.0			2.2	3.0				10.6		
SP2201	4.0	5.0			1	5.5			3.0	3.0				12.6		
SP2202	5.5	7.5				2.0			4.0	5.0				17.0		
SP2203	7.5	10	-	28.0		27.9	24.8	21.8	5.5	7.5	25	5.0	24.2	22.5	19.6	17.2
SP3201	11	15			42.0	_	-	-	7.5	10		-	31.0	-		
SP3202	15	20		54			48.5		11	15		42	2.0		41.3	
SP4201	18.5	25		68			10.0		15	20			5.0		11.0	
SP4202	22	30		80					18.5	25			3.0			
SP4202 SP4203	30	40		10			-		22	30).0).0			
SP4203 SP1401	1.1	1.5		П		2 0				1.0		00		0.4		
						2.8			0.75					2.1		
SP1402	1.5	2.0				3.8			1.1	2.0				3.0		
SP1403	2.2	3.0				5.0			1.5	3.0				4.2		
SP1404	3.0	5.0			6.9			5.9	2.2	3.0			.8		5.4	4.3
SP1405	4.0	5.0		8.	8		7.4	5.7	3.0	5.0			.6	T	5.6	4.4
SP1406	5.5	7.5		11.0		10.0	7.4	5.7	4.0	5.0	9	.5	9.2	7.7	5.6	4.4
SP2401	7.5	10		15			12.7	10.1	5.5	10		13.0		12.6	9.6	7.6
SP2402	11	15	21		19.5	16.7	12.7	10.0	7.5	10	16	6.5	14.9	12.6	9.6	7.6
SP2403	15	20	29.0	27.2	23.2	20.0	15.0	11.8	11	20	25.0	23.7	19.9	16.9	12.8	10.1
SP2404*	15	20	29	0.0	26.6	22.5	16.5	12.5	15	20	29.0	25.8	20.5	16.8	12.1	7.9
SP3401	18.5	25		35.0		34.5	26.3	21.0	15	25		32.0		28.9	22.0	17.5
SP3402	22	30		43.0		37.9	28.6	22.5	18.5	30	40	0.0	38.3	32.5	24.5	19.2
SP3403	30	40	56.0	53.4	44.6	37.9	28.6		22	30	46.0	45.9	38.3	32.5	24.4	
SP4401	37	50		68.0		62.0			30	50	60	0.0	51.9	42.4		
SP4402	45	60	83	3.0	74.0	61.0			37	60	74.0	65.0	50.9	41.7		
SP4403	55	75	10)4	95.1	78.8			45	75	96.0	83.6	66.6	55.2		
SP5401	75	100	13	38	118	97.1			55	100	124	106.5	82.4	67.0		
SP5402	90	125	168	158	129	107			75	125	156	137	109	91.0		
SP6401	110	150	20		164.1				90	150	180	174.4	134.5			
SP6402	132	200	236	210.4	157.7				110	150	210	174.8	129.7			
SP3501	3.0	3.0		5.					2.2	2.0			.1		1	
SP3502	4.0	5.0		6.					3.0	3.0			.4			
SP3503	5.5	7.5		8.					4.0	5.0			.1			
SP3504	7.5	10		11					5.5	7.5			.5			
	11	15		16					7.5	10			2.0			
SP3505 SP3506	11	20	22		.0	18.2			7.5 11	10			2.0	15.5		
										-		18.0	10.4	15.5		
SP3507	18.5	25	27.0	26.0	21.6	18.1			15	20	22	2.0	18.4	15.5		
SP4601	18.5	25		22					15	20			9.0			
SP4602	22	30		27	.0	00.0			18.5	25	ļ		2.0			
SP4603	30	40		36.0		33.9			22	30			7.0			
SP4604	37	50	43		41.3	33.7			30	40		36.0		33.9		
SP4605	45	60	52.0	51.9	41.2	33.7			37	50		3.0	41.3	33.7		
SP4606	55	75	62.0	61.3	48.4	39.6			45	60	52	2.0	44.7	36.5		
SP5601	75	100	84						55	75	63					
SP5602	90	125	99						75	100	85					
SP6601	110	150	125						90	125	100					
SP6602	132	175	144	1	1	1			110	150	125	1	1	İ		

NOTE

For the definition of ambient temperature, see section 3.9 *Cubicle design and drive ambient temperature* on page 52. *See *SP2404 Power and current ratings on page 258.

1	Safety Information	Product Information	Mechanical Installation	Electrical Installation	Getting Started	Basic Parameters	Running the motor	Optimisation	Smartcard operation	Onboard PLC	Advanced Parameters	Technical Data	Diagnostics	UL Listing Information
									•					

Table 12-2 Maximum permissible continuous output current @ 40°C (104°F) ambient for free standing cubicle drives

				Norn	nal Duty							Hea	vy Duty	,		
Model	Nom rati			•			us output Ig freque	t current ncies		ninal ing		•			ous output ng freque	
	kW	hp	3kHz	4kHz	6kHz	8kHz	12kHz	16kHz	kW	hp	3kHz	4kHz	6kHz	8kHz	12kHz	16kHz
SP8411	225	300	389	354	271				185	280	335	278	205			
SP8412	250	400	450	410	313				225	300	389	323	238			
SP8413	315	450	545	496	379				250	400	450	374	275			
SP8414	355	500	620	564	432				315	450	545	453	333			
SP9411	400	600	690	628	480				355	500	620	515	379			
SP9412	450	700	790	719	550				400	600	690	573	422			
SP9413	500	800	900	819	626				450	700	790	657	483			
SP9414	560	900	1010	919	703				500	800	900	748	550			
SP9415	675	1000	1164	1060	810				560	900	1010	839	618			

NOTE

For the definition of ambient temperature, see section 3.9 Cubicle design and drive ambient temperature on page 52.

Table 12-3 Maximum permissible continuous output current @ 40°C (104°F) ambient with IP54 insert and standard fan fitted

				Norn	nal Duty							Hea	vy Duty	1		
Model	Nom rati			•			us output ng freque		-	ninal ing		•			ous outpu ng freque	
	kW	hp	3kHz	4kHz	6kHz	8kHz	12kHz	16kHz	kW	hp	3kHz	4kHz	6kHz	8kHz	12kHz	16kHz
SP1201	1.1	1.5			:	5.2			0.75	1.0				4.3		
SP1202	1.5	2.0			(6.8			1.1	1.5				5.8		
SP1203	2.2	3.0		9.6		9.3	8.2	7.3	1.5	2.0			7.5			7.3
SP1204	3.0	3.0	11.0	10.6	9.7	9.0	7.7	6.6	2.2	3.0	10.6	10.5	9.7	9.0	7.7	6.6
SP2201	4.0	5.0			1	5.5		•	3.0	3.0			12.6		•	
SP2202	5.5	7.5		22.0		20.7	18.0	15.7	4.0	5.0						15.5
SP2203	7.5	10	24.5	23.7	22.0	20.5	17.9	15.6	5.5	7.5					17.7	15.5
SP1401	1.1	1.5				2.8		•	0.75	1.0				2.1		•
SP1402	1.5	2.0			3.8			2.9	1.1	2.0			3.0			2.9
SP1403	2.2	3.0		5.	0		3.9	2.9	1.5	3.0		4	.2		3.9	2.9
SP1404	3.0	5.0	6.	9	6.5	5.4	3.9	2.9	2.2	3.0		5.8		5.4	3.9	2.9
SP1405	4.0	5.0	8.3	7.3	5.8	4.7	3.2	2.3	3.0	5.0	7.6	7.3	5.8	4.7	3.2	2.3
SP1406	5.5	7.5	8.3	7.3	5.8	4.7	3.2	2.3	4.0	5.0	8.2	7.3	5.8	4.7	3.2	2.3
SP2401	7.5	10		15.3		13.3	10.1	7.9	5.5	10		13.0		12.6	9.4	7.3
SP2402	11	15	20.1	18.4	15.6	13.4	10.1	7.9	7.5	10	16.5 14.9 12				9.3	7.2
SP2403	15	20	21.7	19.7	16.4	13.9	10.2	7.7	11	20	21.6	19.6	16.4	13.8	10.2	7.7
SP2404*	15	20	20.1	17.7	14.0	11.2	7.3	4.6	15	20	20.1	17.7	14.0	11.2	7.3	4.6

NOTE

For the definition of ambient temperature, see section 3.9 Cubicle design and drive ambient temperature on page 52.

*SP2404 Power and current ratings

All Unidrive SP models are dual rated except for the SP2404 which only has a Heavy Duty rating. However, if the current limits in Pr **4.05** to Pr **4.07** are set to a maximum of 110% and the switching frequency is greater than 3kHz, then the drive can be used at a maximum continuous current higher than the Heavy Duty rating. See the Normal Duty ratings in Table 12-1, Table 12-3 and Table 12-4. Normal Duty ratings exist for the SP2404 above 3kHz when the overload is reduced from the default value 165% in open loop or 175% in closed loop, to 110%.

If the current limits in Pr 4.05 to Pr 4.07 are set higher than 110% then the Heavy Duty current ratings are applicable.

Safety Product Mechanical Electrical Getting Basic Running the Optimisation Information Information Installation Installation Started Parameters Putting Optimisation	Smartcard Onboard Advanced Technical operation PLC Parameters Data Diagnostics UL Listing Information
---	---

				Norn	nal Duty							Неа	avy Duty	/		
Model	Nom rati			•			us output ng frequei			ninal ing		•			ous output ng freque	
	kW	hp	3kHz	4kHz	6kHz	8kHz	12kHz	16kHz	kW	hp	3kHz	4kHz	6kHz	8kHz	12kHz	16kHz
SP1201	1.1	1.5				5.2			0.75	1.0		1		4.3		
SP1202	1.5	2.0				6.8			1.1	1.5				5.8		
SP1203	2.2	3.0			9.6			9.0	1.5	2.0				7.5		
SP1204	3.0	3.0		11.0		10.9	9.5	8.3	2.2	3.0		10).6		9.5	8.3
SP2201	4.0	5.0		15	5.5		13.5	11.5	3.0	3.0			12.6			11.4
SP2202	5.5	7.5	19.7	18.9	17.3	15.9	13.5	11.5	4.0	5.0		17.0		15.7	13.4	11.4
SP2203	7.5	10	19.5	18.6	17.2	15.8	13.4	11.5	5.5	7.5	19.2	18.4	17.0	15.7	13.3	11.4
SP3201	11	15		42			38.2		7.5	10			31.0			
SP3202	15	20	54		52.8	47.0	38.2		11	15			2.0		37.2	
SP4201	18.5	25		68					15	20			5.0			
SP4202	22	30		80					18.5	25			3.0			
SP4203	30	40		87					22	30		80	0.0			
SP1401	1.1	1.5				2.8			0.75	1.0				2.1		
SP1402	1.5	2.0				3.8			1.1	2.0				3.0		
SP1403	2.2	3.0			5.0			3.9	1.5	3.0			4.2		1.0	3.8
SP1404 SP1405	3.0	5.0	8.	6	-	<u> </u>	5.1	3.9	2.2 3.0	3.0	7	5 .6	.8		4.8 4.2	3.7
SP1405 SP1406	4.0 5.5	5.0 7.5	8.		7.3 7.3	6.0	4.2 4.2	3.1		5.0 5.0	9.5		7.2 7.2	6.0 6.0	4.2	3.1
SP1406 SP2401	5.5 7.5		10.1	9.0 14.2		6.0 10.0	4.2 7.3	3.1	4.0			9.0			4.2 7.3	3.1 5.5
SP2401 SP2402	7.5 11	10 15	15.3	14.2	11.8 11.8	10.0	7.3	5.5 5.5	5.5 7.5	10 10	15.5	3.0 14.1	11.7 11.7	9.9 9.9	7.3	5.5 5.5
SP2402 SP2403	15	20	16.8	14.2	11.0	10.0	7.3	5.5	7.5 11	20	15.5	14.1	11.7	9.9	7.3	5.5
SP2403 SP2404*	15	20	22.3	19.8	12.2	10.1	8.6	5.9	15	20	22.3	19.8	12.2	11.2	7.1	4.6
SP2404 SP3401	18.5	20 25	22.3		33.5	28.5	21.5	5.9 16.9	15	20		19.8	30.7	26.1	19.7	4.0 15.4
SP3401	22	30	43.0	41.5	34.2	28.5	21.0	16.9	18.5	30).0	34.1	28.4	20.7	16.0
SP3402	30	40	46.0	41.5	34.2	28.7	21.0	10.0	22	30	46.0	41.5	33.6	28.3	20.7	10.0
SP4401	37	50	40.0 68		66.8	54.9	21.0		30	50).0	46.7	38.3	20.0	
SP4402	45	60	83.0	81.6	66.5	52.3			37	60	68.2	58.6	46.0	37.7		
SP4403	55	75	86.5	86.2	71.3	59.3			45	75	86.5	74.7	60.1	49.8		
SP5401	75	100	13		105.9	87.4			55	100	112.7	96.4	74.5	59.9		
SP5402	90	125	141	140	112	92			75	125	140	123	99.0	82.0		
SP6401	110	150	191.5	190.1	147.6				90	150	180	157.9	121.5	0210		
SP6402	132	200	198.4	180.6	138.1				110	150	190	157.9	116.2			
SP3501	3.0	3.0		5.			1		2.2	2.0			.1		1	
SP3502	4.0	5.0		6					3.0	3.0			.4			
SP3503	5.5	7.5		8	.4				4.0	5.0		6	.1			
SP3504	7.5	10		11	.0				5.5	7.5		9	.5			
SP3505	11	15		16.0		14.7			7.5	10		12	2.0			
SP3506	15	20	22	2.0	17.8	14.7			11	15	18	3.0	16.8	13.9		
SP3507	18.5	25	24.6	22.0	17.8	14.7			15	20	22.0	20.4	16.7	13.9		
SP4601	18.5	25		22	.0	1			15	20	ľ	19	9.0			
SP4602	22	30		27.0		24.7			18.5	25		22	2.0			
SP4603	30	40	36	6.0	30.7	24.7			22	30		27	7.0			
SP4604	37	50	43.0	39.6	30.7	24.7			30	40	36	6.0	30.7	24.7		
SP4605	45	60	45.6	39.5	30.7	24.7			37	50	43.0	39.6	30.7	24.7		
SP4606	55	75	51.9	44.9	34.7	27.7			45	60	51.9	44.9	34.7	27.7		
SP5601	75	100							55	75						
SP5602	90	125							75	100	l			1		
SP6601	110	150							90	125						
		175		1					110	150			1			

Table 12-4 Maximum permissible continuous output current @ 50°C (122°F) ambient for wall mounted drives

NOTE

For the definition of ambient temperature, see section 3.9 Cubicle design and drive ambient temperature on page 52.

*See *SP2404 Power and current ratings on page 258.

Uptimisation			Electrical Getting Installation Started		he Optimisation	Smartcard operation	Onboard PLC	Advanced Parameters	Technical Data	Diagnostics	UL Listing Information
--------------	--	--	--	--	-----------------	---------------------	----------------	------------------------	-------------------	-------------	---------------------------

Table 12-5 Maximum permissible continuous output current @ 50°C (122°F) ambient for free standing cubicle mounted drives

				Norn	nal Duty							Hea	vy Duty	/		
Model	Nom rati						us output ng freque			ninal ing		•			ous output ng freque	
	kW	hp	3kHz	4kHz	6kHz	8kHz	12kHz	16kHz	kW	hp	3kHz	4kHz	6kHz	8kHz	12kHz	16kHz
SP8411	225	300	327	298	228				185	280	303	252	185			
SP8412	250	400	378	344	263				225	300	352	292	215			
SP8413	315	450	458	417	319				250	400	407	338	249			
SP8414	355	500	521	474	363				315	450	493	410	302			
SP9411	400	600	580	528	404				355	500	561	466	343			
SP9412	450	700	664	605	462				400	600	624	519	382			
SP9413	500	800	757	689	527				450	700	715	594	437			
SP9414	560	900	849	773	591				500	800	814	677	498			
SP9415	675	1000	979	897	681				560	900	914	759	559			

NOTE

For the definition of ambient temperature, see section 3.9 Cubicle design and drive ambient temperature on page 52.

Safety	Product	Mechanical	Electrical	Getting	Basic	Running the	Optimisation	Smartcard	Onboard	Advanced	Technical	Diagnostics	UL Listing
Information	Information	Installation	Installation	Started	Parameters	motor	Optimisation	operation	PLC	Parameters	Data	Diagnostics	Information

12.1.2Power dissipationTable 12-6Losses @ 40°C (104°F) ambient for wall mounted drives

Table 12-6		-	-	-				leration a	ny curre	ent dera	ting for t	the giver	n conditi	ions		
					nal Duty						-		vy Duty			
Model	Nom rati		3kHz	4kHz	6kHz	8kHz	12kHz	16kHz	-	ninal ing	3kHz	4kHz	6kHz	8kHz	12kHz	16kHz
	kW	hp	JKIIZ	4112	UKI 12	OKIIZ	128112	TURITZ	kW	hp	JKI IZ	46112	UKI 12	OKIIZ	128112	TORITZ
SP1201	1.1	1.5	33	35	38	42	49	56	0.75	1	27	29	32	35	41	47
SP1202	1.5	2.0	45	47	51	56	64	73	1.1	1.5	38	40	43	47	55	62
SP1203	2.2	3.0	67	70	76	81	92	104	1.5	2.0	51	53	58	62	71	81
SP1204	3.0	3.0	78	82	89	97	113	129	2.2	3.0	75	78	86	94	109	124
SP2201	4.0	5.0	155	161	173	186	210	235	3.0	3.0	133	139	150	160	182	203
SP2202	5.5	7.5	210	218	234	250	282	314	4.0	5.0	170	176	190	203	229	256
SP2203	7.5	10	272	282	302	3	20	315	5.5	7.5	245	254	263	261	259	258
SP3201	11	15	331	347	380	412	477		7.5	10	260	272	297	321	370	
SP3202	15	20	431	451	492	532	551		11	15	349	365	398	430	486	
SP4201	18.5	25	517	541	589	637			15	20	428	448	488	528		
SP4202	22	30	611	639	694	750			18.5	25	517	541	589	637		
SP4203	30	40	810	845	916	987			22	30	611	639	694	750		
SP1401	1.1	1.5	26	29	37	45	61	76	0.75	1.0	20	24	30	37	51	64
SP1402	1.5	2.0	34	38	48	57	76	95	1.1	2.0	27	31	39	48	64	80
SP1403	2.2	3.0	44	50	61	72	95	117	1.5	3.0	37	42	52	62	82	102
SP1404	3.0	5.0	62	69	83	97	126	134	2.2	3.0	52	58	70	83	101	104
SP1405	4.0	5.0	83	94	117	139	156	157	3.0	5.0	72	82	101	121	123	125
SP1406	5.5	7.5	106	120	147	158	156	157	4.0	5.0	91	103		123		125
SP2401	7.5	10	186	202	234	266	283	282	5.5	10	164	178	206	2	229	231
SP2402	11	15	248	269	291	286	283	281	7.5	10	201	218	230	2	229	231
SP2403	15	20	313		320		315	316	11	20	272	282	279	278	279	282
SP2404	15	20	311	343		;	376		15	20	311	308	301	299	302	284
SP3401	18.5	25	364	392	449	499	477	465	15	25	337	363	415	424	408	401
SP3402	22	30	437	471	540	538	514	501	18.5	30	411	443	485	469	452	444
SP3403	30	40	567	580	552	533	510		22	30	474	509	485	469	452	
SP4401	37	50	714	781	914	956			30	50	629	689	704	674		
SP4402	45	60	882	961	995	941			37	60	780	745	690	663		
SP4403	55	75	1070	1158	1217	1144			45	75	976	920	854	821		
SP5401	75	100	1471	1618	1640	1560			55	100	1311	1236	1150	1112		
SP5402	90	125	1830	1881	1781	1717			75	125	1681	1600	1508	1464		
SP6401	110	150	2058	2259	2153				90	150	1817	1935	1772			
SP6402	132	200	2477	2455	2255				110	150	2192	2042	1888			
SP3501	3.0	3.0	127	141	168	196			2.2	2.0	112	124	148	172		
SP3502	4.0	5.0	135	150	180	209			3.0	3.0	127	141	168	196		
SP3503	5.5	7.5	163	181	218	254			4.0	5.0	135	150	180	209		
SP3504	7.5	10	197	219	263	306			5.5	7.5	178	198	237	276		
SP3505	11	15	267	296	354	412			7.5	10	212	235	281	328		
SP3506	15	20	362	399	475	471			11	15	300	332	396	405		
SP3507	18.5	25	448	486	477	471			15	20	365	403	406	405		
SP4601	18.5	25	409	470	590	711			15	20	360	413	519	625		
SP4602	22	30	496	568	712	857			18.5	25	409	470	590	711		
SP4603	30	40	660	754	941	1063			22	30	496	568	712	857		
SP4604	37	50	798	908	1083	1058			30	40	660	754	941	1063		
SP4605	45	60	985	1115	1080	1058			37	50	798	908	1083	1058		
SP4606	55	75	1060	1179	1130	1105			45	60	873	987	1042	1023		
SP5601	75	100							55	75						
SP5602	90	125							75	100						
SP6601	110	150							90	125						
SP6602	132	175							110	150						

NOTE

For the definition of ambient temperature, see section 3.9 Cubicle design and drive ambient temperature on page 52.

											-		
Safety	Product	Mechanical	Electrical	Gettina	Basic	Running the		Smartcard	Onboard	Advanced	Technical		UL Listina
				5	_	5	Optimisation		DI C			Diagnostics	
Information	Information	Installation	Installation	Started	Parameters	motor		operation	PLC	Parameters	Data		Information

Table 12-7 Losses @ 40°C (104°F) ambient for free standing cubicle drives

			0	Drive los	ses (W) i	taking in	to consid	leration a	ny curre	ent dera	ting for t	the giver	n conditi	ons		
				Norm	nal Duty							Hea	vy Duty			
Model	Nominal rating 3kHz 4kHz 6kHz 8kHz 12kHz 16kHz		-	ninal ing	3kHz	4kHz	6kHz	8kHz	12kHz	16kHz						
	kW	hp							kW	hp						
SP8411	225	300	4592	5061	5769				185	280	3968	4355	4919			
SP8412	250	400	5102	5624	6410				225	300	4826	5297	5983			
SP8413	315	450	6429	7086	8077				250	400	5363	5885	6648			
SP8414	355	500	7245	7986	9103				315	450	6757	7416	8376			
SP9411	400	600	8163	8998	10256				355	500	7615	8357	9440			
SP9412	450	700	9184	10123	1538				400	600	8580	9417	10637			
SP9413	500	800	10204	11247	12821				450	700	9653	10594	11966			
SP9414	560	900	11429	12597	14359				500	800	10725	11771	13296			
SP9415	675	1000	13776	15184	17308				560	900	12012	13183	14891			

Table 12-8 Losses @ 40°C (104°F) ambient with IP54 insert and standard fan fitted

			[Drive los	ses (W)	taking in	to consid	leration a	ny curre	ent dera	ting for	the give	n conditi	ions		
				Norn	nal Duty							Hea	vy Duty			
Model	Nom rati		3kHz	4kHz	6kHz	8kHz	12kHz	16kHz	-	ninal ing	3kHz	4kHz	6kHz	8kHz	12kHz	16kHz
	kW	hp	1						kW	hp						
SP1201	1.1	1.5	33	35	38				0.75	1.0	27	29	32	35	41	47
SP1202	1.5	2.0	45	47	51	56	64	73	1.1	1.5	38	40	43	47	55	62
SP1203	2.2	3.0	67	70 76 78				1.5	2.0	51	53	58	62	71	78	
SP1204	3.0	3.0				78			2.2	3.0	75			78		
SP2201	4.0	5.0	155	55 161 173 186 210 235					3.0	3.0	133	139	150	160	182	203
SP2202	5.5	7.5	210	218	234		237		4.0	5.0	170	176	190	203	229	237
SP2203	7.5	10			2	237			5.5	7.5				237		
SP1401	1.1	1.5	26	29	37	45	61	76	0.75	1.0	20	24	30	37	51	64
SP1402	1.5	2.0	34	38	48	57	76	78	1.1	2.0	27	31	39	48	64	78
SP1403	2.2	3.0	44	50	61	72	7	8	1.5	3.0	37	42	52	62	7	8
SP1404	3.0	5.0	62	69		•	78		2.2	3.0	52	58	70		78	
SP1405	4.0	5.0				78			3.0	5.0	72			78		
SP1406	5.5	7.5				78			4.0	5.0				78		
SP2401	7.5	10	186	186 202 234 237					5.5	10	164	178	206	229	2	26
SP2402	11	15		237					7.5	10	201	218	230	2	24	223
SP2403	15	20		237						20		•		237		•
SP2404	15	20		225 220					15	20	1		225			220

Safety Information	Product Information	Mechanical Installation	Electrical Installation	Getting Started	Basic Parameters	Running the motor	Optimisation	Smartcard operation	Onboard PLC	Advanced Parameters	Technical Data	Diagnostics	UL Listing Information
internation	momaton	motanation	motandion	010100	. arametere	meter		oporation		i arametere			memanen

Table 12-9 Losses @ 50°C (122°F) ambient for wall mounted drives

Table 12-9			-					leration a	ny curre	ent dera	ting for	the give	n conditi	ions		
				Norn	nal Duty	-					•	Hea	vy Duty			
Model	Nom rati		3kHz	4kHz	6kHz	8kHz	12kHz	16kHz		ninal ing	3kHz	4kHz	6kHz	8kHz	12kHz	16kHz
	kW	hp	•••••		•••••	0			kW	hp	•		••••	•••••		
SP1201	1.1	1.5	33	35	38	42	49	56	0.75	1	27	29	32	35	41	47
SP1202	1.5	2.0	45	47	51	56	64	73	1.1	1.5	38	40	43	47	55	62
SP1203	2.2	3.0	67	70	76	81	92	97	1.5	2.0	51	53	58	62	71	81
SP1204	3.0	3.0	78	82	89		97		2.2	3.0	75	78	86	94	9	7
SP2201	4.0	5.0	155	161	173	186	19	90	3.0	3.0	133	139	150	160	182	190
SP2202	5.5	7.5			1	90			4.0	5.0	170	176			190	
SP2203	7.5	10			1	90			5.5	7.5				190		
SP3201	11	15	331	347	380	412	436		7.5	10	260	272	297	321	370	
SP3202	15	20	431	451	480	463	439		11	15	349	365	398	430	439	
SP4201	18.5	25	517	541	589	637			15	20	428	448	488	528		
SP4202	22	30	611	639	694	750			18.5	25	517	541	589	637		
SP4203	30	40	671	701	761	821			22	30	611	639	694	750		
SP1401	1.1	1.5	26	29	37	45	61	76	0.75	1.0	20	24	30	37	51	64
SP1402	1.5	2.0	34	38	48	57	76	95	1.1	2.0	27	31	39	48	64	80
SP1403	2.2	3.0	44	50	61	72	95	97	1.5	3.0	37	42	52	62	82	95
SP1404	3.0	5.0	62	69	83		97		2.2	3.0	52	58	70	83	-	2
SP1405	4.0	5.0	83	94			97		3.0	5.0	72	82			97	
SP1406	5.5	7.5				97			4.0	5.0	91			97		
SP2401	7.5	10	186			190			5.5	10	164	178			190	
SP2402	11	15				190			7.5	10				190		
SP2403	15	20			190				11	20				190		
SP2404	15	20				245			15	20			245			229
SP3401	18.5	25	364	392	430	417	399	389	15	25	337	363	399	387	373	364
SP3402	22	30	437	455	435	418	399	388	18.5	30	411	443	435	417	396	388
SP3403	30	40	474	459	429	415	397		22	30	474	459	429	415	397	
SP4401	37	50	714	781	898	852			30	50	629	689	638	617		
SP4402	45	60 75	882	944	894	814			37	60 75	716	673	629	607 750		
SP4403 SP5401	55 75		877 1471	949 1616	912 1462	875 1411			45		876 1186	820	775 1047			
SP5401 SP5402	90	100 125	1471	1644	1462	1411			55 75	100 125	1500	1118 1434	1366	1009 1333		
SP5402 SP6401	90 110	125	1942	2118	1939	1460			90	125	1817	1434	1610	1333		
SP6401 SP6402	132	200	2068	2110	1939				110	150	1979	1851	1715			
SP3501	3.0	3.0	127	141	168	196	1		2.2	2.0	112	124	148	172	1	
SP3501 SP3502	4.0	5.0	135	150	180	209			3.0	3.0	112	141	140	196		
SP3503	5.5	7.5	163	181	218	203			4.0	5.0	135	150	180	209		
SP3504	7.5	10	100	219	263	306			5.5	7.5	178	198	237	276		
SP3505	11	15	267	296	354	383			7.5	10	212	235	281	328		
SP3506	15	20	362	399	390	384			11	15	300	332	372	369		
SP3507	18.5	25	405	399	390	384			15	20	365	374	-	69		
SP4601	18.5	25	409	470	590	711			15	20	360	413	519	625		
SP4602	22	30	496	568	712	789			18.5	25	409	470	590	711		
SP4603	30	40	660	754	805	789			22	30	496	568	712	789		
SP4604	37	50	798	831	805	789			30	40	660	754	805	789		
SP4605	45	60	850	831	805	789			37	50	798	831	805	789		
SP4606	55	75	871	848	816	797			45	60	871	848	816	797		
SP5601	75	100							55	75	1					
SP5602	90	125							75	100						
SP6601	110	150							90	125						
SP6602	132	175							110	150				1		

Cafata	Due du et	Mashaniaal	E la strisse l	C attin a	Deele	Duran in a the		Cure a star a stal	Orthograd	ام م م م م م	Technical		III Listing
Safety	Product	Mechanical	Electrical	Getting	Basic	Running the	Optimisation	Smartcard	Onboard	Advanced	Technical	Diagnostics	UL Listing
Information	Information	Installation	Installation	Started	Parameters	motor	Optimisation	operation	PLC	Parameters	Data	Diagnostics	Information
				0.000.000				••••••	•				

Table 12-10 Losses @ 50°C (122°F) ambient for free standing cubicle drives

			[Drive los	ses (W)	taking in	to consid	leration a	ny curre	ent dera	ting for t	the give	n conditi	ons		
				Norm	nal Duty							Hea	vy Duty			
Model	Nom rati		3kHz	4kHz	6kHz	8kHz	12kHz	16kHz	-	ninal ing	3kHz	4kHz	6kHz	8kHz	12kHz	16kHz
	kW	hp							kW	hp						
SP8411	225	300							185	280						
SP8412	250	400							225	300						
SP8413	315	450							250	400						
SP8414	355	500							315	450						
SP9411	400	600							355	500						
SP9412	450	700							400	600						
SP9413	500	800							450	700						
SP9414	560	900							500	800						
SP9415	675	1000							560	900						

Table 12-11 Power losses from the front of the drive when through-panel mounted

Frame size	Power loss
1	≤50W
2	≤75W
3	≤100W
4	≤204W
5	≤347W
6	≤480W

12.1.3 Supply requirements

Voltage:

SPX20X	200V to 240V ±10%
SPX40X	380V to 480V ±10%
SPX50X	500V to 575V ±10%
SPX60X	500V to 690V ±10%

Number of phases: 3

Maximum supply imbalance: 2% negative phase sequence (equivalent to 3% voltage imbalance between phases).

Frequency range: 48 to 65 Hz

For UL compliance only, the maximum supply symmetrical fault current must be limited to $100 \mbox{kA}$

Unidrive SP size 6 heatsink fan supply requirements

Nominal voltage:	24V
Minimum voltage:	23.5V
Maximum voltage:	27V
Current drawn:	3.3A
Recommended power supply:	24V, 100W, 4.5A
Recommended fuse:	4A fast blow (I ² t less than 20A ² s)

12.1.4 Line reactors

Input line reactors reduce the risk of damage to the drive resulting from poor phase balance or severe disturbances on the supply network.

Where line reactors are to be used, reactance values of approximately 2% are recommended. Higher values may be used if necessary, but may result in a loss of drive output (reduced torque at high speed) because of the voltage drop.

For all drive ratings, 2% line reactors permit drives to be used with a supply unbalance of up to 3.5% negative phase sequence (equivalent to 5% voltage imbalance between phases).

Severe disturbances may be caused by the following factors, for example:

- Power factor correction equipment connected close to the drive.
- Large DC drives having no or inadequate line reactors connected to the supply.
- Direct-on-line started motor(s) connected to the supply such that when any of these motors are started, the voltage dip exceeds 20%

Such disturbances may cause excessive peak currents to flow in the input power circuit of the drive. This may cause nuisance tripping, or in extreme cases, failure of the drive.

Drives of low power rating may also be susceptible to disturbance when connected to supplies with a high rated capacity.

Line reactors are particularly recommended for use with the following drive models when one of the above factors exists, or when the supply capacity exceeds 175kVA:

SP1201 SP1202 SP1203 SP1204 SP1401 SP1402 SP1403 SP1404

Model sizes SP1405 to SP4606 have an internal DC choke and SP5401 to SP6602 have internal AC line chokes, so they do not require AC line reactors except for cases of excessive phase unbalance or extreme supply conditions.

When required each drive must have its own reactor(s). Three individual reactors or a single three-phase reactor should be used.

Reactor current ratings

The current rating of the line reactors should be as follows:

Continuous current rating: Not less than the continuous input current rating of the drive

Repetitive peak current rating:

Not less than twice the continuous input current rating of the drive

12.1.5 Motor requirements

No. of phases: 3

Maximum voltage: Unidrive SP (200V): 240V Unidrive SP (400V): 480V Unidrive SP (575V): 575V Unidrive SP (690V): 690V

12.1.6 Temperature, humidity and cooling method

Ambient temperature operating range:

0°C to 50°C (32°F to 122°F).

Output current derating must be applied at ambient temperatures >40°C (104°F).

Minimum temperature at power-up:

-15°C (5°F), the supply must be cycled when the drive has warmed up to 0°C (32°F).

Cooling method: Forced convection

Maximum humidity: 95% non-condensing at 40°C (104°F)

1	Safety Information	Product Information	Mechanical Installation	Electrical Installation	Getting Started	Basic Parameters	Running the motor	Optimisation	Smartcard operation	Onboard PLC	Advanced Parameters	Technical Data	Diagnostics	UL Listing Information
	intornation	monnation	motanation	motanation	olariou	i aramotoro	motor		operation	1 20	i arametere	Data		internation

12.1.7 Storage

-40°C (-40°F) to +50°C (122°F) for long term storage, or to +70°C (158°F) for short term storage.

12.1.8 Altitude

Altitude range: 0 to 3,000m (9,900 ft), subject to the following conditions:

1,000m to 3,000m (3,300 ft to 9,900 ft) above sea level: de-rate the maximum output current from the specified figure by 1% per 100m (330 ft) above 1,000m (3,300 ft)

For example at 3,000m (9,900ft) the output current of the drive would have to be de-rated by 20%.

IP Rating (Ingress Protection) 12.1.9

The Unidrive SP is rated to IP20 pollution degree 2 (dry, non-conductive contamination only) (NEMA 1). However, it is possible to configure the drive to achieve IP54 rating (NEMA 12) at the rear of the heatsink for through-panel mounting (some current derating is required).

In order to achieve the high IP rating at the rear of the heatsink with Unidrive SP size 1 and 2, it is necessary to seal a heatsink vent by fitting the IP54 insert as shown in Figure 3-45 and Figure 3-46 on page 54. For increased fan life time in a dirty environment the heatsink fan must be replaced with an IP54 rated fan on size 1 to 4. Sizes 5 and 6 are fitted with IP54 heatsink fans as standard. Contact the supplier of the drive for details. Fitting of the IP54 insert and/or IP54 rated fan on sizes 1 and 2 requires output current derating to be applied, see section 12.1.1 Power and current ratings (Derating for switching frequency and temperature) on page 257 for further details.

The IP rating of a product is a measure of protection against ingress and contact to foreign bodies and water. It is stated as IP XX, where the two digits (XX) indicate the degree of protection provided as shown in Table 12-12

Table 12-12 IP Rating degrees of protection

	First digit		Second digit
	otection against contact and gress of foreign bodies	Pr	otection against ingress of water
0	No protection	0	No protection
1	Protection against large foreign bodies $\phi > 50$ mm (large area contact with the hand)	1	-
2	Protection against medium size foreign bodies ϕ > 12mm (finger)	2	-
3	Protection against small foreign bodies $\phi > 2.5$ mm (tools, wires)	3	Protection against spraywater (up to 60° from the vertical)
4	Protection against granular foreign bodies $\phi > 1$ mm (tools, wires)	4	Protection against splashwater (from all directions)
5	Protection against dust deposit, complete protection against accidental contact.	5	Protection against heavy splash water (from all directions, at high pressure)
6	Protection against dust ingress, complete protection against accidental contact.	6	Protection against deckwater (e.g. in heavy seas)
7	-	7	Protection against immersion
8	-	8	Protection against submersion

Table 12-13 NEMA enclosure ratings

NEMA rating	Description
Type 1	Enclosures are intended for indoor use, primarily to provide a degree of protection against contact with the enclosed equipment or locations where unusual service conditions do not exist.
Type 12	Enclosures are intended for indoor use, primarily to provide a degree of protection against dust, falling dirt and dripping non-corrosive liquids.

12.1.10 Corrosive gasses

Concentrations of corrosive gases must not exceed the levels given in: Table A2 of EN 50178

Class 3C1 of IEC 60721-3-3

This corresponds to the levels typical of urban areas with industrial activities and/or heavy traffic, but not in the immediate neighbourhood of industrial sources with chemical emissions.

Vibration 12.1.11

Bump Test

Testing in each of three mutually perpendicular axes in turn.					
IEC 60068-2-29: Test Eb:					
Severity: 18g, 6ms, half sine					
600 (100 in each direction of each axis)					
andom Vibration Test					
Testing in each of three mutually perpendicular axes in turn.					

Ra

Testing in each of three mutually perpendicular axes in turn.				
Referenced standard:	IEC 60068-2-64: Test Fh:			
Severity:	1.0 m ² /s ³ (0.01 g ² /Hz) ASD from 5 - 20 Hz			
	-3 dB/octave from 20 to 200 Hz			
Duration:	30 minutes in each of 3 mutually			
	perpendicular axes.			

Sinusoidal Vibration Test

0	e mutually perpendicular axes in turn.
Referenced standard:	IEC 60068-2-6: Test Fc:
Frequency range:	2 - 500 Hz
Severity:	3.5 mm peak displacement from 2 to 9 Hz
	10 m/s ² peak acceleration from 9 to 200 Hz
	15 m/s ² peak acceleration from 200 to 500 Hz
Sweep rate:	1 octave/minute
Duration:	15 minutes in each of 3 mutually
	perpendicular axes.

12.1.12 Starts per hour

By electronic control: unlimited

By interrupting the AC supply: ≤20 (equally spaced)

Start up time 12.1.13

This is the time taken from the moment of applying power to the drive, to the drive being ready to run the motor:

Sizes 1 to 6: 4s

12.1.14 Output frequency / speed range

Open-loop frequency range: 0 to 3,000Hz

Closed-loop speed range: 0 to 600Hz

Closed-loop frequency range: 0 to 1,250Hz

12.1.15 Accuracy and resolution Speed:

The absolute frequency and speed accuracy depends on the accuracy of the crystal used with the drive microprocessor. The accuracy of the crystal is 100ppm, and so the absolute frequency/speed accuracy is 100ppm (0.01%) of the reference, when a preset speed is used. If an analogue input is used the absolute accuracy is further limited by the absolute accuracy of the analogue input.

The following data applies to the drive only; it does not include the performance of the source of the control signals.

	Safety Information	Product Information	Mechanical Installation	Electrical Installation	Getting Started	Basic Parameters	Running the motor	Optimisation	Smartcard operation	Onboard PLC	Advanced Parameters	Technical Data	Diagnostics	UL Listing Information
--	-----------------------	------------------------	----------------------------	----------------------------	--------------------	---------------------	----------------------	--------------	---------------------	----------------	------------------------	-------------------	-------------	---------------------------

Open loop resolution:

Preset frequency reference: 0.1Hz Precision frequency reference: 0.001Hz

Closed loop resolution

Preset speed reference: 0.1rpm Precision speed reference: 0.001rpm Analogue input 1: 16bit plus sign Analogue input 2: 10bit plus sign

Current:

The resolution of the current feedback is 10bit plus sign. The typical accuracy of the current feedback is 2%.

12.1.16 Acoustic noise

The heatsink fan generates the majority of the acoustic noise produced by the drive. The heatsink fan on Unidrive SP size 1 and 2 is a dual speed fan and on size 3 to 6 it is a variable speed fan. The drive controls the speed at which the fan runs based on the temperature of the heatsink and the drive's thermal model system. On Unidrive SP size 4 to 6 the minimum speed of the heatsink fan is 0 rpm. The Unidrive SP size 3 to 6 is also fitted with a single speed fan to ventilate the capacitor bank.

Table 12-14 gives the acoustic noise produced by the drive for the heatsink fan running at the maximum and minimum speeds.

Table 12-14	Acoustic noise data for wall mounted drives
-------------	---

	< Date c	ode M38	≥ Date code M38			
Size	Max speed dBA	Min speed dBA	Max speed dBA	Min speed dBA		
1	48	41	48	28		
2	54	45	54	35		
3	56	43	56	43		
4						
5						
6						

Table 12-15 Acoustic noise data for free standing cubicle drives

	< Date c	ode M38	≥ Date c	ode M38
Size	Max speed dBA	Min speed dBA	Max speed dBA	Min speed dBA
8			70*	57*
9				

*These figures are worst case as they include some low level background noise due to the location of the measurement.

12.1.17 Overall dimensions

- H Height including surface mounting brackets
- W Width
- D Projection forward of panel when surface mounted
- F Projection forward of panel when through-panel mounted
- R Projection rear of panel when through-panel mounted

Table 12-16 Overall wall mounted drive dimensions

Size			Dimension		
5126	Н	W	D	F	R
1	386mm (15.197in)	100mm (3.937in)	219mm	139mm	≤80mm
2	389mm (15.315in)	155mm (6.102in)	(8.622in)	(5.472in)	(3.150in)
3		250mm (9.843in)	260mm (10.236in)	140mm (5.512in)	≤120mm (4.724in)
4	547mm (21.528in)				
5	858mm (33.752in)	310mm (12.205in)	298mm (11.732in)	200mm (7.874in)	≤98mm (3.858in)
6	1169mm (46.016in)				

Table 12-17 Ov	verall free standing cubicle mounted drive dimensions
----------------	---

Size	Dimension									
	н	W	D	F	R					
8	2180mm (85.827in)	400mm (15.748in)	600mm (23.622in)							
9	2180mm (85.827in)	800mm (31.496in)	600mm (23.622in)							

12.1.18 Weights

Table 12-18 Overall wall mounted drive weights

Size	Model	kg	lb
1	SP1201 to SP1204, SP1401 to SP1404	5	11.0
	SP1405 and SP1406	5.8	12.8
2	All	7	15.4
3	All	15	33.1
4	All	30	66.1
5	All	55	121.3
6	All	75	165.3

Table 12-19 Overall free standing cubicle drive weights

			J				
Size	Model	kg Ib					
8	All	266	586				
9	All	532	1173				

12.1.19 Input current, fuse and cable size ratings

The input current is affected by the supply voltage and impedance.

Typical input current

The values of typical input current are given to aid calculations for power flow and power loss.

The values of typical input current are stated for a balanced supply.

Maximum continuous input current

The values of maximum continuous input current are given to aid the selection of cables and fuses. These values are stated for the worst case condition with the unusual combination of stiff supply with bad balance. The value stated for the maximum continuous input current would only be seen in one of the input phases. The current in the other two phases would be significantly lower.

The values of maximum input current are stated for a supply with a 2% negative phase-sequence imbalance and rated at the maximum supply fault current given in Table 12-20.

1	Safety	Product	Mechanical	Electrical	Getting	Basic	Running the	Optimisation	Smartcard	Onboard	Advanced	Technical	Diagnostics	UL Listing
	Information	Information	Installation	Installation	Started	Parameters	motor	Optimisation	operation	PLC	Parameters	Data	Diagnostics	Information

Table 12-20 Supply fault current used to calculate maximum input currents

Model	Symmetrical fault level (kA)
All	100

Table 12-21 Size 1 to 3 input current, fuse and cable size ratings

		Maximum	Europear	n cable size l	EN60204	USA ca	ble size UL5	08C
Model	Typical input current	Maximum continuous input current	Fuse rating IEC gG	Input	Output	Fuse rating Class CC <30A Class J >30A	Input	Output
	А	Α	Α	mm ²	mm ²	Α	AWG	AWG
SP1201	7.1	9.5	10	1.5	1.0	10	14	18
SP1202	9.2	11.3	12	1.5	1.0	15	14	16
SP1203	12.5	16.4	20	4.0	1.0	20	12	14
SP1204	15.4	19.1	20	4.0	1.5	20	12	14
SP2201	13.4	18.1	20	4.0	2.5	20	12	14
SP2202	18.2	22.6	25	4.0	4.0	25	10	10
SP2203	24.2	28.3	32	6.0	6.0	30	8	8
SP3201	35.4	43.1	50	16	16	45	6	6
SP3202	46.8	54.3	63	25	25	60	4	4
SP1401	4.1	4.8	8	1.0	1.0	8	16	22
SP1402	5.1	5.8	8	1.0	1.0	8	16	20
SP1403	6.8	7.4	8	1.0	1.0	10	16	18
SP1404	9.3	10.6	12	1.5	1.0	15	14	16
SP1405	10	11	12	1.5	1.0	15	14	14
SP1406	12.6	13.4	16	2.5	1.5	15	14	14
SP2401	15.7	17	20	4.0	2.5	20	12	14
SP2402	20.2	21.4	25	4.0	4.0	25	10	10
SP2403	26.6	27.6	32	6.0	6.0	30	8	8
SP2404	26.6	27.6	32	6.0	6.0	30	8	8
SP3401	34.2	36.2	40	10	10	40	6	6
SP3402	40.2	42.7	50	16	16	45	6	6
SP3403	51.3	53.5	63	25	25	60	4	4
SP3501	5.0	6.7	8	1.0	1.0	10	16	18
SP3502	6.0	8.2	10	1.0	1.0	10	16	16
SP3503	7.8	11.1	12	1.5	1.0	15	14	14
SP3504	9.9	14.4	16	2.5	1.5	15	14	14
SP3505	13.8	18.1	20	4.0	2.5	20	12	14
SP3506	18.2	22.2	25	4.0	4.0	25	10	10
SP3507	22.2	26.0	32	6.0	6.0	30	8.0	8.0

Safety Information	Product Information	Mechanical Installation	Electrical Installation	Getting Started	Basic Parameters	Running the motor	Optimisation	Smartcard operation	Onboard PLC	Advanced Parameters	Technical Data	Diagnostics	UL Listing Information
iniomation	Information	Installation	Installation	Starteu	i alameters	motor		operation	I LO	1 arameters	Data		mormation

Table 12-22 Size 4, 5 and 6 input current, fuse and cable size ratings

	Typical input	Maximum	Fuse	option 1	semiconducto	ption 2 r fuse in series se or breaker		Cable	e size	
Model	current	input current	IEC class gR	North America: Ferraz HSJ	HRC IEC class gG UL class J	Semi- conductor IEC class aR	Inj	put	Out	tput
	Α	Α	Α	Α	Α	Α	mm ²	AWG	mm ²	AWG
SP4201	62.1	68.9	100	90	90	160	25	3	25	3
SP4202	72.1	78.1	100	100	100	160	35	3	35	3
SP4203	94.5	99.9	125	125	125	200	70	1	70	1
SP4401	61.2	62.3	80	80	80	160	25	3	25	3
SP4402	76.3	79.6	110	110	100	200	35	2	35	2
SP4403	94.1	97.2	125	125	125	200	70	1	70	1
SP5401	126	131	200	175	160	200	95	2/0	95	2/0
SP5402	152	156	250	225	200	250	120	4/0	120	4/0
SP6401	206	215	250	250	250	315	2 x 70 2 x 2/0		2 x 70	2 x 2/0
SP6402	247	258	315	300	300	350	2 x 120	2 x 4/0	2 x 120	2 x 4/0
SP8411	377	418			500	400	2 x 120	2 x 410	2 x 120	2 x 410
SP8412	432	479			500	800	2 x 120	2 x 500	2 x 120	2 x 500
SP8413	535	593			600	800	2 x 185	3 x 400	2 x 185	3 x 400
SP8414	631	700			700	800	2 x 240	4 x 350	2 x 240	4 x 350
SP4601	23	26.5	63	60	32	125	4	10	4	10
SP4602	26.1	28.8	63	60	40	125	6	8	6	8
SP4603	32.9	35.1	63	60	50	125	10	8	10	8
SP4604	39	41	63	60	50	125	16	6	16	6
SP4605	46.2	47.9	63	60	63	125	16	6	16	6
SP4606	55.2	56.9	80	60	63	125	25	4	25	4
SP5601	75.5	82.6	125	100	90	160	35	2	35	2
SP5602	89.1	94.8	125	100	125	160	50	1	50	1
SP6601	128	139	160	175	150	315	2 x 50	2 x 1	2 x 50	2 x 1
SP6602	144	155	160	175	160	315	2 x 50	2 x 1	2 x 50	2 x 1

The Semiconductor IEC class aR fuses for size 8 and 9 drives must be fitted within the cubicle, see Figure 3-20 on page 36. These parts may be bought from EPA, see Table 12-23.

Table 12-23 Size 8 and 9 fuses

Fuse IEC aR	Part No.
800A	4300-0800
400A	4300-0400

Inrush current

The Unidrive SP will have an inrush current during power-up, the peak inrush is limited to the value shown below:

SP120X	18 A peak
SP140X	35 A peak
SP220X	12 A peak
SP240X	24 A peak
SP320X	8 A peak
SP340X	14 A peak
SP350X	18 A peak
SP420X	73 A peak
SP4401	37 A peak
SP4402 and SP4403:	73 A peak
SP460X	35 A peak
SP540X	110 A peak
SP560X	70 A peak

NOTE

The inrush current for all Unidrive SP after a brown-out can be larger than the power-up inrush.

12.1.20 Maximum motor cable lengths

Table 12-24 Maximum motor cable lengths (200V drives)

	200	V Nomina	I AC supp	oly voltag	е						
Model	Maximu	•	n permissible motor cable length for each of the following frequencies								
	3kHz	4kHz	6kHz	8kHz	12kHz	16kHz					
SP1201		65m (
SP1202	1	00m (330	ft)								
SP1203	130m	(425ft)				07					
SP1204		150m			50m	37m (120ft)					
SP2201			100m (330ft)	75m (245ft)	(165ft)	(12011)					
SP2202	200m										
SP2203	(660ft)	(490ft)	(00011)								
SP3201											
SP3202											
SP4201	250m	105-	105-	0.0~~							
SP4202	250m (820ft)	185m (607ft)	125m (410ft)	90m (295ft)							
SP4203	(02011)	(00711)	((20011)							

Safety Information	Product Information	Mechanical Installation	Electrical Installation	Getting Started	Basic Parameters	Running the motor	Optimisation	Smartcard operation	Onboard PLC	Advanced Parameters	Technical Data	Diagnostics	UL Listing Information
-----------------------	------------------------	----------------------------	----------------------------	--------------------	---------------------	-------------------	--------------	---------------------	----------------	------------------------	-------------------	-------------	---------------------------

Table 12-25 Maximum motor cable lengths (400V drives)

400V Nominal AC supply voltage Maximum permissible motor cable length for each of the following frequencies Model 3kHz 4kHz 6kHz 8kHz 12kHz 16kHz SP1401 65m (210ft) SP1402 100m (330ft) SP1403 130m (425ft) SP1404 SP1405 SP1406 37m 50m (120ft) SP2401 75m (165ft) 100m SP2402 (245ft) 200m 150m (330ft) (660ft) (490ft) SP2403 SP2404 SP3401 SP3402 SP3403 SP4401 SP4402 90m SP4403 250m 185m 125m (295ft) SP5401 (820ft) (607ft) (410ft) SP5402 SP6401 SP6402 SP8411 SP8412 SP8413 SP8414 500m 370m 250m SP9411 (1640ft) (1214ft) (820ft) SP9412 SP9413 SP9414 SP9415

Table 12-26 Maximum motor cable lengths (575V drives)

575V Nominal AC supply voltage										
Model	Maximum permissible motor cable length for each of the following frequencies									
	3kHz	4kHz	6kHz	8kHz	12kHz	16kHz				
SP3501			100m (330ft)	75m (245ft)						
SP3502										
SP3503	200-									
SP3504	200m (660ft)	150m (490ft)								
SP3505	(00011)	(49011)								
SP3506										
SP3507										

Table 12-27 Maximum motor cable lengths (690V drives)

	690V Nominal AC supply voltage									
Model	Maximum permissible motor cable length for each of the following frequencies									
	3kHz	3kHz 4kHz 6kHz 8kHz 12kHz								
SP4601										
SP4602		185m	125m	90m (295ft)						
SP4603										
SP4604										
SP4605	250m									
SP4606	(820ft)	(607ft)	(410ft)							
SP5601										
SP5602										
SP6601										
SP6602										

 Cable lengths in excess of the specified values may be used only when special techniques are adopted; refer to the supplier of the drive.

• The default switching frequency is 3kHz for Open-loop and Closedloop vector, and 6kHz for Servo.

The maximum cable length is reduced from that shown in Table 12-24 and Table 12-25 if high capacitance motor cables are used. For further information, refer to section *High-capacitance cables* on page 79.

12.1.21 Braking resistor values

Table 12-28 Minimum resistance values and peak power rating for the braking resistor at 40°C (104°F)

Model	Minimum resistance* Ω	Instantaneous power rating kW
SP1201 to SP1203	43	3.5
SP1204	29	5.3
SP2201 to SP2203	18	8.9
SP3201 to SP3202	5	30.3
SP4201 to SP4203	5	30.3
SP1401 to SP1404	74	8.3
SP1405 to SP1406	58	10.6
SP2401 to SP2404	19	33.1
SP3401 to SP3403	18	35.5
SP4401 to SP4402	11	55.3
SP4403	9	67.6
SP5401 to SP5402	7	86.9
SP6401 to SP6402	5	121.7
SP6411 to SP6412		
SP3501 to SP3507	18	50.7
SP4601 to SP4606	13	95
SP5601 to SP5602	10	125.4
SP6601 to SP6602		
SP6611 to SP6612		

* Resistor tolerance: ±10%

Safety	Product	Mechanical	Electrical	Getting	Basic	Running the	Ontimication	Smartcard	Onboard	Advanced	Technical	Diagnostics	UL Listing
Information	Information	Installation	Installation	Started	Parameters	motor	Optimisation	operation	PLC	Parameters	Data	Diagnostics	Information

12.1.22 Torque settings

 Table 12-29
 Drive control and relay terminal data

Model	Connection type	Torque setting
All	Plug-in terminal block	0.5 N m 0.4 lb ft

Table 12-30 Wall mounted drive power terminal data

Model size	AC terminals	High current DC and braking	Low voltage DC	Ground terminal	
1	Plug-in		k (M4 screws) (1.1 lb ft)		
2	terminal block 1.5 N m (1.1 lb ft)	Terminal block (M5 screws) 1.5 N m (1.1 lb ft)	Terminal block (M4 screws) 1.5 N m	Stud (M5) 4.0 N m 2.9 lb ft	
3		k (M6 screws) 1.8 lb ft	(1.1 lb ft)	6.0 N m 4.4 lb ft	
4	M10	stud		M10 stud	
5		Nm		15 N m	
6	(11.1	lb ft)		(11.1 lb ft)	
	Torq	ue tolerance		±10%	

Table 12-31 Free standing cubicle drive terminal data

Model size	AC terminals	AC terminals DC and braking		Ground terminal
8	2 x M10 cleara	•		15 N m
9	15 N m (rallel cables. 11.1 lb ft) not supplied.		15 N m
	Torq		±10%	

12.1.23 Electromagnetic compatibility (EMC)

This is a summary of the EMC performance of the drive. For full details, refer to the *Unidrive SP EMC Data Sheet* which can be obtained from the supplier of the drive.

Table 12-32 Immunity compliance

Standard	Type of immunity	Test specification	Application	Level
IEC61000-4-2 EN61000-4-2	Electrostatic discharge	6kV contact discharge 8kV air discharge	Module enclosure	Level 3 (industrial)
IEC61000-4-3 EN61000-4-3	Radio frequency radiated field	10V/m prior to modulation 80 - 1000MHz 80% AM (1kHz) modulation	Module enclosure	Level 3 (industrial)
IEC61000-4-4	Fast transient	5/50ns 2kV transient at 5kHz repetition frequency via coupling clamp	Control lines	Level 4 (industrial harsh)
EN61000-4-4	burst	5/50ns 2kV transient at 5kHz repetition frequency by direct injection	Power lines	Level 3 (industrial)
		Common mode 4kV 1.2/50µs waveshape	AC supply lines: line to ground	Level 4
IEC61000-4-5 EN61000-4-5	Surges	Differential mode 2kV 1.2/50µs waveshape	AC supply lines: line to line	Level 3
		Lines to ground	Signal ports to ground ¹	Level 2
IEC61000-4-6 EN61000-4-6	Conducted radio frequency	10V prior to modulation 0.15 - 80MHz 80% AM (1kHz) modulation	Control and power lines	Level 3 (industrial)
IEC61000-4-11 EN61000-4-11	Voltage dips and interruptions	-30% 10ms +60% 100ms -60% 1s <-95% 5s	AC power ports	
EN50082-1 IEC61000-6-1 EN61000-6-1		nity standard for the nmercial and light - onment		Complies
EN50082-2 IEC61000-6-2 EN61000-6-2	Generic immur industrial envir	nity standard for the onment		Complies
EN61800-3 IEC61800-3 EN61800-3	Product standa speed power d (immunity requ		Meets immunit requirements f second enviror	or first and

¹ See section *Surge immunity of control circuits - long cables and connections outside a building* on page 90 for control ports for possible requirements regarding grounding and external surge protection

Emission

The drive contains an in-built filter for basic emission control. An additional optional external filter provides further reduction of emission. The requirements of the following standards are met, depending on the motor cable length and switching frequency.

Safety Information	Product Information	Mechanical Installation	Electrical Installation	Getting Started	Basic Parameters	Running the motor	Optimisation	Smartcard operation	Onboard PLC	Advanced Parameters	Technical Data	Diagnostics	UL Listing Information
-----------------------	------------------------	----------------------------	----------------------------	--------------------	---------------------	----------------------	--------------	---------------------	----------------	------------------------	-------------------	-------------	---------------------------

I

Table 12-33 Size 1 emission compliance

Motor cable	Switching frequency (kHz)								
length (m)	3	4	6	8	12	16			
Using internal filter:									
0 to 4	E2U	E2U E2R							
>4	E2R								
Using internal filter and external ferrite ring:									
0 to 10		E2U			E2R				
> 10			Eź	2R					
Using external f	filter:								
0 to 25	R I								
25 to 75			I	•					
75 to 100		I							

Table 12-34 Size 2 emission compliance

Motor cable		Swit	ching fre	quency (kHz)				
length (m)	3	4	6	8	12	16			
Using internal filter:									
Any	E2R								
Using internal filter and external ferrite ring:									
0 to 4	E2U E2R								
4 to 10	E2U			E2R					
> 10			E2	2R					
Using external	filter:								
0 to 25	R I								
25 to 75	I								
75 to 100		I							

Table 12-35 Size 3 (200V and 400V only) emission compliance

Motor cable	Switching frequency (kHz)									
length (m)	3	4 6 8								
Using internal fi	Using internal filter:									
Any		E2R								
Using internal filter and external ferrite ring:										
0 to 10	E2U E2R									
> 10		•	E2R							
Using external f	filter:									
0 to 20	R		I							
20 to 50										
50 to 75		I								
75 to 100					•					

Table 12-36 Size 4 (400V only) emission compliance

Motor cable		Switching fr	equency (kHz)				
length (m)	3	4	6	8				
Using internal fi	lter:							
Any		E	2R					
Using external f	filter:							
0 to 25								
20 to 50			1					
50 to 75	I		E2U					
75 to 100		I E2U						

Key (shown in decreasing order of permitted emission level):

E2R EN 61800-3 second environment, restricted distribution (Additional measures may be required to prevent interference)

E2U EN 61800-3 second environment, unrestricted distribution Industrial generic standard EN 50081-2 (EN 61000-6-4) EN 61800-3 first environment restricted distribution (The following caution is required by EN 61800-3)

This is a product of the restricted distribution class according to IEC 61800-3. In a domestic environment this product may cause radio interference in which case the user may be CAUTION required to take adequate measures.

R Residential generic standard EN 50081-1 (EN 61000-6-3) EN 61800-3 first environment unrestricted distribution

EN 61800-3 defines the following:

- The first environment is one that includes domestic premises. It also includes establishments directly connected without intermediate transformers to a low-voltage power supply network which supplies buildings used for domestic purposes.
- The second environment is one that includes all establishments other than those directly connected to a low-voltage power supply network which supplies buildings used for domestic purposes.
- ٠ Restricted distribution is defined as a mode of sales distribution in which the manufacturer restricts the supply of equipment to suppliers, customers or users who separately or jointly have technical competence in the EMC requirements of the application of drives.

Safety Information	Product Information	Mechanical Installation	Electrical Installation	Getting Started	Basic Parameters	Running the motor	Optimisation	Smartcard operation	Onboard PLC	Advanced Parameters	Technical Data	Diagnostics	UL Listing Information
-----------------------	------------------------	----------------------------	----------------------------	--------------------	---------------------	-------------------	--------------	---------------------	----------------	------------------------	-------------------	-------------	---------------------------

12.2 Optional external EMC filters

Table 12-37 Unidrive SP and EMC filter cross reference

Drive	type1	type2
Dilve	part no.	part no.
SP1201 to SP1202	4200-6118	4200-6121
SP1203 to SP1204	4200-6119	4200-6120
SP2201 to SP2203	4200-6210	4200-6211
SP3201 to SP3202	4200-6307	4200-6306
SP4201 to SP4203	4200-6406	4200-6405
SP1401 to SP1404	4200-6118	4200-6121
SP1405 to SP1406	4200-6119	4200-6120
SP2401 to SP2404	4200-6210	4200-6211
SP3401 to SP3403	4200-6305	4200-6306
SP4401 to SP4403	4200-6406	4200-6405
SP5401 to SP5402	4200-6503	4200-6501
SP6401 to SP6402	4200-6603	4200-6601
SP3501 to SP3507	4200-6309	4200-6308
SP4601 to SP4606	4200-6408	4200-6407
SP5601 to SP5602	4200-6504	4200-6502
SP6601 to SP6602	4200-6604	4200-6602

For free standing cubicle drives (size 8 and 9), EMC filters can be sourced from EPA. See Table 12-38 for details.

Table 12-38	Free standing cubicle drive EMC filter details (size 8 and 9))
-------------	--	----

Drive	Power (kW)	Input (A)	Filter rating (A)	Filter (V)	type2 part number	type1 part number
SP8411	185/200	408	600	415	B84143-B600-S20	FN3359-600-99
SP8412	225/250	467	600	415	B84143-B600-S20	FN3359-600-99
SP8413	250/315	576	600	415	B84143-B600-S20	FN3359-600-99
SP8414	315/355	678	1000	415	B84143-B1000-S20	FN3359-1000-99
SP9411	355/400	864	1000	415	B84143-B1000-S20	FN3359-1000-99
SP9412	400/450	864	1000	415	B84143-B1000-S20	FN3359-1000-99
SP9413	450/500	935	1000	415	B84143-B1000-S20	FN3359-1000-99
SP9414	500/560	1151	1600	415	B84143-B1600-S20	FN3359-1600-99
SP9415	560/675	1356	1600	415	B84143-B1600-S20	FN3359-1600-99

Safety	Product	Mechanical	Electrical	Getting	Basic	Running the	Optimisation	Smartcard	Onboard	Advanced	Technical	Diagnostics	UL Listing
Information	Information	Installation	Installation	Started	Parameters	motor	Optimisation	operation	PLC	Parameters	Data	Diagnostics	Information

12.2.1 **EMC filter ratings**

Table 12-39 Optional external EMC filter details

		Maxi		Voltage		Power	Ground leaka	ge	
part number		continuou @ 40°C (104°F) A	@ 50°C (122°F) A	rating V	IP rating	dissipation at rated current W	Balanced supply phase-to-phase and phase-to-ground mA	Worst case mA	Discharge resistors
4200-6118		10	10			6.9	29.4	153	
4200-6119		16	16	400		9.2	38.8	277	
4200-6210		32	28.2			11	38.0	206	See Note 1
4200-6305		62	56.6	400		23	66.0	357	
4200-6307		75	68.5	200		29	24.0	170	
4200-6309		30	30	575	20	15	102.0	557	See Note 3
4200-6406	type1	101	92.2	400		25	73.0	406	See Note 1
4200-6408		58	52.8	690		31	66.0	344	See Note 1
4200-6503		164	150	480		30	39.1	216	See Note 4
4200-6504		95	86.7	690		30	66.0	344	See Note 1
4200-6603		260	237	480	00	14.2	41.0	219	See Note 1
4200-6604									
4200-6121		10	9.1			4.2			
4200-6120		16	14.6	400		10.8	<30.0	186.5	
4200-6211		32	29.1	400		17.8	<30.0		See Note 2
4200-6306		75	68.3			19.4		238	See Note 2
4200-6308		30	22.5	660	20	17.6	<35.0	230	
4200-6405	type2	101	75	480		30	<30.0	180	
4200-6407		58	44	690		15	<40.0	<340	See Note 5
4200-6501		165	125	480	1	27	<20.0	<120	See Note 2
4200-6502		95	71	690		19	<55.0	<450	See Note 5
4200-6601									
4200-6602									

NOTE

1. 1MΩ in a star connection between phases, with the star point connected by a 680kΩ resistor to ground (i.e. line to line 2MΩ, line to ground 1.68MΩ)

2. $1M\Omega$ in a star connection between phases, with the star point connected by a $1.5M\Omega$ resistor to ground (i.e. line to line $2M\Omega$, line to ground $2.5M\Omega$) 3. $2M\Omega$ between phases with each phase connected by a $660k\Omega$ resistance to ground.

4. 1.5MΩ in a star connection between phases, with the star point connected by a 680kΩ resistor to ground (i.e. line to line 3MΩ, line to ground 2.18MΩ)

5. 1.8MΩ in a star connection between phases, with the star point connected by a 1.5MΩ resistor to ground (i.e. line to line 3.6MΩ, line to ground 3.3MΩ)

	Safety Information	Product Information	Mechanical Installation	Electrical Installation	Getting Started	Basic Parameters	Running the motor	Optimisation	Smartcard operation	Onboard PLC	Advanced Parameters	Technical Data	Diagnostics	UL Listing Information
--	-----------------------	------------------------	----------------------------	----------------------------	--------------------	---------------------	-------------------	--------------	---------------------	----------------	------------------------	-------------------	-------------	---------------------------

12.2.2 Overall EMC filter dimensions

 Table 12-40 Optional external EMC filter dimensions

part	Monufacturer		Dimension		We	ight
number	Manufacturer	Н	W	D	kg	lb
4200-6118		440 mm (17.323 in)	100 mm (3.937 in)	45 mm (1.772in)	1.4	3.1
4200-6119		440 11111 (17.323 11)	100 11111 (3.937 111)	45 mm (1.772m)	1.4	3.1
4200-6210		428.5 mm (16.870 in)	155 mm (6.102 in)	55 mm (2.165 in)	2	4.4
4200-6305						
4200-6307		414 mm (16.299 in)	250 mm (9.842 in)	60 mm (2.362 in)	3.5	7.7
4200-6309	type 1					
4200-6406	турет		225 mm (8.858 in)	100 mm (3.937 in)	4	8.8
4200-6408		300 mm (11.811 in)	208 mm (8.189 in)		3.8	8.4
4200-6503		300 mm (11.611 m)	249 mm (9.803 in)	120 mm (4.724 in)	6.8	15
4200-6504			225 mm (8.858 in)	100 mm (3.937 in)	4.4	9.7
4200-6603		135 mm (5.315 in)	295 mm (11.614 in)	230 mm (9.055 in)	5.25	11.6
4200-6604						
4200-6121		450 mm (17.717 in)	100 mm (3.937 in)	45 mm (1.772 in)	2.1	4.6
4200-6120		450 mm (17.717 m)	100 11111 (3.937 111)	45 11111 (1.772 11)	2.1	4.0
4200-6211		431.5 mm (16.988 in)	155 mm (6.102 in)	55 mm (2.165 in)	3.3	7.3
4200-6306		425 mm (16.732 in)	250 mm (9.843 in)	60 mm (2.362 in)	5.1	11.2
4200-6308		425 11111 (10.752 11)	250 mm (9.045 m)	00 11111 (2.302 111)	5.1	11.2
4200-6405	type 2		207 mm (8.150 in)	90 mm (3.543 in)	7.8	17.2
4200-6407	1	300 mm (11.811 in)	205 mm (8.071 in)		8.0	17.6
4200-6501	1	500 mm (11.011 m)	249 mm (9.803 in)	120 mm (4.724 in)	12.0	26.5
4200-6502	1		249 mm (9.003 m)	120 11111 (4.724 111)	10.0	22.0
4200-6601	1					
4200-6602	1					

12.2.3 EMC filter torque settings

Table 12-41 Optional external EMC Filter terminal data

part	Manufacturer	Power con	nections	Ground co	nnections
number	Manufacturer	Max cable size	Max torque	Ground stud size	Max torque
4200-6118		4mm ² 12AWG	0.8 N m (0.6 lb ft)		
4200-6119		4mm ² 12AVVG		M5	3.5 N m (2.6 lb ft)
4200-6210		10mm ² 8AWG	2.0 N m (1.5 lb ft)		
4200-6305					
4200-6307		16mm ² 6AWG	2.2 N m (1.6 lb ft)	M6	3.9 N m (2.9 lb ft)
4200-6309					
4200-6406	type 1	50mm ² 0AWG	8 N m (5.9 lb ft)	M10	25 N m (18.4 lb ft)
4200-6408		25mm ² 4AWG	2.3 N m (1.7 lb ft)	M6	3.9 N m (2.9 lb ft)
4200-6503		95mm ² 4/0AWG	20 N m (14.7 lb ft)		
4200-6504		50mm ² 0AWG	8 N m (5.9 lb ft)	M10	25 N m (18.4 lb ft)
4200-6603	1		12 N m (8.8 lb ft)		
4200-6604					
4200-6120		4mm ² 12AWG	0.6 N m (0.4 lb ft)		
4200-6121		411111 12AVVG		M5	3.0 N m (2.2 lb ft)
4200-6211		10mm ² 8AWG	1.35 N m (1.0 lb ft)		
4200-6306		16mm ² 6AWG	2.2 N m (1.6 lb ft)	M6	5 4 N m (2 0 lb ft)
4200-6308	type 2	10mm ² 8AWG	1.35 N m (1.0 lb ft)	IVIO	5.1 N m (3.8 lb ft)
4200-6405		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	C O N		
4200-6407		50mm ² 0AWG	6.8 N m (5.0 lb ft)	M10	$10 \text{ N} \approx (7.4 \text{ lb ft})$
4200-6501	1	95mm ² 4/0AWG	$20 \text{ N} \approx (14 \text{ T} \text{ lb ft})$	IVI TU	10 N m (7.4 lb ft)
4200-6502	1	95mm ⁻ 4/UAWG	20 N m (14.7 lb ft)		
4200-6601	1				
4200-6602					

Safety Product Mechanical Electrical Getting Basic Running the motor Optimisation Information Information Installation Installation Started Parameters Parameters Optimisation	n Smartcard operation	Onboard PLC	Advanced Parameters	Technical Data	Diagnostics	UL Listing Information
---	-----------------------	----------------	------------------------	-------------------	-------------	---------------------------

13 **Diagnostics**

The display on the drive gives various information about the status of the drive. These fall into three categories:

- Trip indications
- Alarm indications
- Status indications

Users must not attempt to repair a drive if it is faulty, nor carry out fault diagnosis other than through the use of the diagnostic features described in this chapter. If a drive is faulty, it must be returned to an authorized WARNING EPA distributor for repair.

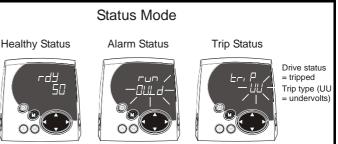
13.1 Trip indications

If the drive trips, the output of the drive is disabled so that the drive stops controlling the motor. The lower display indicates that a trip has occurred and the upper display shows the trip. If this is a multi-module drive and a power module has indicated a trip, then the upper display will alternate between the trip string and the module number.

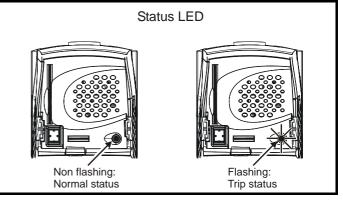
Trips are listed alphabetically in Table 13-1 based on the trip indication shown on the drive display. Refer to Figure 13-1.

If a display is not used, the drive LED Status indicator will flash if the drive has tripped. Refer to Figure 13-2.

The trip indication can be read in Pr **10.20** providing a trip number. Trip numbers are listed in numerical order in Table 13-2 so the trip indication can be cross referenced and then diagnosed using Table 13-1.


Example

- 1. Trip code 3 is read from Pr 10.20 via serial communications.
- Checking Table 13-2 shows Trip 3 is an OI.AC trip. 2.



- 3. Look up OI.AC in Table 13-1.
- 4. Perform checks detailed under Diagnosis.

Figure 13-1 Keypad status modes

Figure 13-2 Location of the status LED

Trip	Diagnosis
OI.AC	Instantaneous output over current detected: peak output current greater than 225%
3	Acceleration / deceleration rate is too short. If seen during autotune reduce voltage boost Pr 5.15 Check for short circuit on output cabling Check integrity of motor insulation Check feedback device wiring Check feedback device mechanical coupling Check feedback signals are free from noise Is motor cable length within limits for that frame size? Reduce the values in speed loop gain parameters – Pr 3.10 , Pr 3.11 and Pr 3.12 (closed loop vector and servo modes only) Has offset measurement test been completed? (servo mode only) Reduce the values in current loop gain parameters - Pr 4.13 and Pr 4.14 (closed loop vector and servo modes only)

Γ	Safety	Product	Mechanical	Electrical	Getting	Basic	Running the	Optimisation	Smartcard	Onboard	Advanced	Technical	Diagnostics	UL Listing
I	nformation	Information	Installation	Installation	Started	Parameters	motor	Optimisation	operation	PLC	Parameters	Data	Diagnostics	Information

Table 13-1 Trip indications

Trip	Diagnosis
C.Acc	SMARTCARD trip: SMARTCARD Read / Write fail
185	Check SMARTCARD is fitted / located correctly Replace SMARTCARD
C.boot	SMARTCARD trip: The menu 0 parameter modification cannot be saved to the SMARTCARD because the necessary file has not been created on the SMARTCARD
177	A write to a menu 0 parameter has been initiated via the keypad with Pr 11.42 set to auto(3) or boot(4), but the necessary file on the SMARTCARD has not bee created Ensure that Pr 11.42 is correctly set and reset the drive to create the necessary file on the SMARTCARD Re-attempt the parameter write to the menu 0 parameter
C.bUSY	SMARTCARD trip: SMARTCARD can not perform the required function as it is being accessed by a Solutions Module
178	Wait for the Solutions Module to finish accessing the SMARTCARD and then re-attempt the required function
C.Chg	SMARTCARD trip: Data location already contains data
179	Erase data in data location Write data to an alternative data location
C.cPr	SMARTCARD trip: The values stored in the drive and the values in the data block on the SMARTCARD are different
188	Press the red 💿 reset button
C.dAt	SMARTCARD trip: Data location specified does not contain any data
183	Ensure data block number is correct
C.Err	SMARTCARD trip: SMARTCARD data is corrupted
182	Ensure the card is located correctly Erase data and retry Replace SMARTCARD
C.Full	SMARTCARD trip: SMARTCARD full
184	Delete a data block or use different SMARTCARD
cL2	Analogue input 2 current loss (current mode)
28	Check analogue input 2 (terminal 7) current signal is present (4-20mA, 20-4mA)
cL3	Analogue input 3 current loss (current mode)
29	Check analogue input 3 (terminal 8) current signal is present (4-20mA, 20-4mA)
CL.bit	Trip initiated from the control word (Pr 6.42)
35	Disable the control word by setting Pr 6.43 to 0 or check setting of Pr 6.42
C.OPtn	SMARTCARD trip: Solutions Modules fitted are different between source drive and destination drive
180	Ensure correct Solutions Modules are fitted Ensure Solutions Modules are in the same Solutions Module slot Press the red 💿 reset button
C.rdo	SMARTCARD trip: SMARTCARD has the Read Only bit set
181	Enter 9777 in Pr xx.00 to allow SMARTCARD Read / Write access Ensure card is not writing to data locations 500 to 999

Safety Information	Product Information	Mechanical Installation	Electrical Installation	Getting Started	Basic Parameters	Running the motor	Optimisation	Smartcard operation	Onboard PLC	Advanced Parameters	Technical Data	Diagnostics	UL Listing Information	
Trip							Diagnos	is						
C.rtg		SMARTCARD trip: SMARTCARD attempting to change the destination drive ratings No drive rating parameters have been transferred												
		Press the red reset button Drive rating parameters are:												
		Parameter Function												
		2	.08	Stand	Standard ramp voltage									
		4.05/6/7,	, 21.27/8/9	Curre	ent limits									
			.24	User	current ma	ximum sca	lling							
			, 21.07		Notor rated current									
186			, 21.09		r rated volta	-								
100			, 21.10		d power fac									
			, 21.12 .18		r resistance									
		-	.18		hing freque	ency								
	-	,	, 21.13 , 21.14		sient induct	ance								
			. 21.24		r inductanc									
			.06		jection bra		nt							
			.48			-	tection level							
	The	-	-			0								
C.TyP		The above parameters will be set to their default values. SMARTCARD trip: SMARTCARD parameter set not compatible with drive												
C.Tyr			-	TCARD	Jarameter									
187	Ensu		ion drive ty				arameter file		•					
dESt	Two	or more pa	arameters	are writi	ng to the s	ame desti	nation para	meter						
199	Set F	or xx.00 = 1	2001 chec	k all visib	le paramet	ers in the n	nenus for du	plication						
EEF		ROM data o 85 comms		- Drive m	ode beco	mes open	loop and s	erial comn	ns will tim	neout with	remote k	eypad on	the drive	
31	This	trip can only	y be cleare	ed by load	ling default	parameter	s and savin	g paramete	ers					
Enc1	Drive	e encoder t	trip: Enco	der powe	er supply o	verload								
189		k encoder mum currer					requirement 5V							
Enc2	Drive	e encoder t	trip: Wire I	break (Dr	ive encod	er termina	ls 1 & 2, 3 a	4, 5 & 6)						
190	Cheo Cheo Repla	ck cable cor ck wiring of ck encoder p ace feedbac e break det	feedback s power is se ck device	et correctl	У	er input is	not requirec	, set Pr 3.4	. 0 = 0 to d	isable the E	Enc2 trip			
Enc3	Drive	e encoder t	trip: Phase	e offset i	ncorrect w	hilst runni	ing							
191	Cheo Cheo	ck the encoder ck encoder ck the integr eat the offse	shielding rity of the e	encoder m		mounting								
Enc.		eat the offse				failure								
Enc4	Ensu	ire encoder	power sup	ply is cor		stallure								
192	Chec	re baud rat k encoder v ace feedba	wiring	t										
Enc5	Drive	e encoder t	trip: Checl	ksum or	CRC error									
193	Chec	k the encod the encod EnDat encod	der cable s	hielding	mms resolu	tion and/or	· carry out th	e auto-con	figuration	Pr 3.41				
							,							
Enc6		Drive encoder trip: Encoder has indicated an error Replace feedback device With SSI encoders, check the wiring and encoder supply setting												

Trip	Diagnosis										
Enc7	Drive encoder trip: Initialisation failed										
195	Re-set the drive Check the correct encoder type is entered into Pr 3.38 Check encoder wiring										
Enc8	Drive encoder trip: Auto configuration on power up has been requested and failed										
196	Change the setting of Pr 3.41 to 0 and manually enter the drive encoder turns (Pr 3.33) and the equivalent number of lines per revolution (Pr 3.34) Check the comms resolution										
Enc9	Drive encoder trip: Position feedback selected is selected from a Solutions Module slot which does not have a speed / position feedback Solutions Module fitted										
197	Check setting of Pr 3.26 (or Pr 21.21 if the second motor parameters have been enabled)										
Enc10	Drive encoder trip: Servo mode phasing failure because encoder phase angle (Pr 3.25 or Pr 21.20) is incorrect										
198	Check the encoder wiring. Perform an autotune to measure the encoder phase angle or manually enter the correct phase angle into Pr 3.25 (or Pr 21.20). Spurious Enc10 trips can be seen in very dynamic applications. This trip can be disabled by setting the overspeed threshold in Pr 3.08 to a value greater than zero. Caution should be used in setting the over speed threshold level as a value which is too larg may mean that an encoder fault will not be detected.										
Enc11	Drive encoder trip: A failure has occurred during the alignment of the analogue signals of a SINCOS encoder with the digital count derived from the sine and cosine waveforms and the comms position (if applicable). This fault is usually du to noise on the sine and cosine signals.										
161	Check encoder cable shield. Examine sine and cosine signals for noise.										
Enc12	Drive encoder trip: Hiperface encoder - The encoder type could not be identified during auto-configuration										
162	Check encoder type can be auto-configured. Check encoder wiring. Enter parameters manually.										
Enc13	Drive encoder trip: EnDat encoder - The number of encoder turns read from the encoder during auto-configuration is not power of 2										
163	Select a different type of encoder.										
Enc14	Drive encoder trip: EnDat encoder - The number of comms bits defining the encoder position within a turn read from the encoder during auto-configuration is too large.										
164	Select a different type of encoder. Faulty encoder.										
Enc15	Drive encoder trip: The number of periods per revolution calculated from encoder data during auto-configuration is either less than 2 or greater than 50,000.										
165	Linear motor pole pitch / encoder ppr set up is incorrect or out of parameter range i.e. Pr 5.36 = 0 or Pr 21.31 = 0. Faulty encoder.										
Enc16	Drive encoder trip: EnDat encoder - The number of comms bits per period for a linear encoder exceeds 255.										
166	Select a different type of encoder. Faulty encoder.										
Enc17	Drive encoder trip: The periods per revolution obtained during auto-configuration for a rotary SINCOS encoder is not a power of two.										
167	Select a different type of encoder. Faulty encoder.										
ENP.Er	Data error from electronic nameplate stored in selected position feedback device										
176	Replace feedback device										
Et	External trip from input on terminal 31										
6	Check terminal 31 signal Check value of Pr 10.32 Enter 12001 in Pr xx.00 and check for parameter controlling Pr 10.32 Ensure Pr 10.32 or Pr 10.38 (=6) are not being controlled by serial comms										
HF01	Data processing error: CPU address error										

Trip Diagnosis IF02 Data processing error: DMAC adoption Hardware fault - netum drive to supplier HF03 Data processing error: Illegal instruction Hardware fault - netum drive to supplier HF04 Data processing error: Illegal instruction Hardware fault - netum drive to supplier HF04 Data processing error: Illegal instruction Hardware fault - netum drive to supplier HF05 Data processing error: Watchdog rallure Hardware fault - netum drive to supplier HF06 Data processing error: Watchdog rallure Hardware fault - netum drive to supplier HF07 Data processing error: Heap overflow Hardware fault - netum drive to supplier HF08 Data processing error: Reserved exception Hardware fault - netum drive to supplier HF00 Data processing error: Level 4 crash Hardware fault - netum drive to supplier HF00 Data processing error: Router error Hardware fault - netum drive to supplier HF10 Data processing error: Storware incompatible with hardware Hardware fault - netum drive to supplier HF11	Safety Information	roduct Mechanical Electrical Getting Basic Parameters Running the motor Optimisation Optimisation Started Parameters Parameters Control PLC Parameters Data Diagnostics UL Lis											
Hardware fault - return drive to supplier HEG0 Data processing error: Illegal instruction HEG0 Data processing error: Illegal instruction HEG0 Data processing error: Illegal sist instruction HEG0 Data processing error: Illegal sist instruction Hardware fault - return drive to supplier HF05 Data processing error: Reserved exception Hardware fault - return drive to supplier HF06 Data processing error: Watchdog failure Hardware fault - return drive to supplier HF07 Data processing error: Level A crash Hardware fault - return drive to supplier HF08 Data processing error: Reap overflow Hardware fault - return drive to supplier HF09 Data processing error: Reap overflow Hardware fault - return drive to supplier HF10 Data processing error: Reap overflow Hardware fault - return drive to supplier HF10 Data processing error: Reap overflow Hardware fault - return drive to supplier HF11 Data processing error: Reap error HF12 Data processing error: Reap error HF14 Data processing error: Reap error HF15 Data	Trip	Diagnosis											
HE03 Data processing error: Illegal instruction HF04 Data processing error: Illegal solt instruction HF04 Data processing error: Illegal solt instruction Hardware fault - return drive to supplier HF05 Data processing error: Reserved exception Hardware fault - return drive to supplier HF05 Data processing error: Watchdog failure Hardware fault - return drive to supplier HF07 Data processing error: Watchdog failure Hardware fault - return drive to supplier HF08 Data processing error: Heap overflow Hardware fault - return drive to supplier HF09 Data processing error: Reserved scapplier HF10 Data processing error: Reserved scapplier HF11 Data processing error: Reserved scapplier HF11 Data processing error: Rule return drive to supplier HF11 Data processing error: Rule return drive to supplier HF11 Data processing error: Soltware lacl HF11 Data processing error: Soltware lacl <t< th=""><th>HF02</th><th>Data processing error: DMAC address error</th></t<>	HF02	Data processing error: DMAC address error											
Hardware fault - return drive to supplier HF04 Data processing error: Undefined exception HF05 Data processing error: Undefined exception HF06 Data processing error: Watchdog failure HF07 Data processing error: Watchdog failure HF07 Data processing error: Watchdog failure HF07 Data processing error: Watchdog failure Hardware fault - return drive to supplier HF08 Data processing error: Heap overflow Hardware fault - return drive to supplier HF09 Data processing error: Heap overflow Hardware fault - return drive to supplier HF190 Data processing error: Router error HF110 Data processing error: Asoptier HF110 Data processing error: Maip program stack overflow Hardware fault - return drive to supplier HF11 Data processing error: Software incompatible with hardware Hardware fault - return drive to supplier HF12 Data processing error: Software incompatible with hardware Hardware fault - return drive to supplier HF12 Data processing error: Software incompatible with hardware Hardware fault - return drive to supplier HF12 Data process		Hardware fault - return drive to supplier											
HF04 Data processing error: Illegal stot instruction Hardware fault - return drive to supplier HF05 Data processing error: Undefined exception HF06 Data processing error: Reserved exception HF07 Data processing error: Watcholog failure HF08 Data processing error: Watcholog failure Hardware fault - return drive to supplier Hardware fault - return drive to supplier HF09 Data processing error: Hacholog overflow Hardware fault - return drive to supplier Hardware fault - return drive to supplier HF190 Data processing error: Reserved exception Hardware fault - return drive to supplier Hardware fault - return drive to supplier HF100 Data processing error: Reserved exception Hardware fault - return drive to supplier HF11 Data processing error: Router error Hardware fault - return drive to supplier HF11 Data processing error: Stotware fault - return drive to supplier HF12 Data processing error: Stotware fault - return drive to supplier HF12 Data processing error: Stotware fault - return drive to supplier HF12 Data processing error: Mali program stock overflow Hardware fault - return drive to supplier Hardware fault - return	HF03	Data processing error: Illegal instruction											
Hardware fault - return drive to supplier HF05 Data processing error: Undefined exception HF06 Data processing error: Reserved exception HF07 Data processing error: Reserved exception HF08 Data processing error: Watchdog failure HF09 Data processing error: Heaved exception HF08 Data processing error: Level 4 crash Hardware fault - return drive to supplier HF08 Data processing error: Heave vertiow Hardware fault - return drive to supplier HF09 Data processing error: Heave vertiow Hardware fault - return drive to supplier HF09 HF10 Data processing error: Rouver error Hardware fault - return drive to supplier HF11 Data processing error: Rouver error Hardware fault - return drive to supplier HF11 Data processing error: Software locompatible with hardware Hardware fault - return drive to supplier HF13 Data processing error: Software locompatible with hardware Hardware fault - return drive to supplier HF13 Data processing error: Software locompatible with hardware Hardware fault - return drive to supplier HF14 Multi-module system interrorisons of soft circuit <		Hardware fault - return drive to supplier											
HF65 Data processing error: Undefined exception Hardware fault - return drive to supplier HF66 Data processing error: Reserved exception HF67 Data processing error: Watchdog failure HF67 Data processing error: Watchdog failure HF67 Data processing error: Level 4 crash HF68 Data processing error: Level 4 crash Hardware fault - return drive to supplier HF69 Data processing error: Level 4 crash Hardware fault - return drive to supplier HF69 Data processing error: Nate error Hardware fault - return drive to supplier HF10 Data processing error: Access to EEPROM failed Hardware fault - return drive to supplier HF11 Data processing error: Software incompatible with hardware HF12 Data processing error: Software incompatible with hardware HF13 Data processing error: Software incompatible with hardware HF14 Data processing error: Software incompatible with hardware HF15 Data processing error: Software incompatible with hardware HF14 Data processing error: Software incompatible with hardware HF15 Data processing error: Software incompatible with ardware HF	HF04	Data processing error: Illegal slot instruction											
Hardware fault - return drive to supplier HF00 Data processing error: Watchodg failure HF07 Data processing error: Watchodg failure HF08 Data processing error: Usel 4 crash Hardware fault - return drive to supplier Herdware fault - return drive to supplier HF09 Data processing error: Hardware fault - return drive to supplier HF09 Data processing error: Router error Hardware fault - return drive to supplier Herdware fault - return drive to supplier HF10 Data processing error: Router error Hardware fault - return drive to supplier Herdware fault - return drive to supplier HF11 Data processing error: Software incompatible with hardware Hardware fault - return drive to supplier Herdware fault - return drive to supplier HF12 Data processing error: Software incompatible with hardware Hardware fault - return drive to supplier Herdware or software fault - return drive to supplier HF12 Data processing error: Software incompatible with hardware Hardware fault - return drive to supplier Herdware fault - return drive to supplier HF13 Multi-module system interconnect cable error 218 Hardware fault - return drive to supplier HF14 <td< th=""><th></th><th>Hardware fault - return drive to supplier</th></td<>		Hardware fault - return drive to supplier											
HF66 Data processing error: Reserved exception Hardware fault - return drive to supplier HF07 Data processing error: Watchdog failure Hardware fault - return drive to supplier HF08 Data processing error: Level 4 crash Hardware fault - return drive to supplier HF09 Data processing error: Heap overflow Hardware fault - return drive to supplier HF10 Data processing error: Router error Hardware fault - return drive to supplier HF11 Data processing error: Access to EEPROM failed Hardware fault - return drive to supplier HF12 Data processing error: Main program stack overflow Hardware fault - return drive to supplier HF12 Data processing error: Struter incompatible with hardware Hardware fault - return drive to supplier HF13 Data processing error: Struter incompatible with hardware Hardware fault - return drive to supplier HF14 Multi-module system interconnect cable error H141 Hardware fault - return drive to supplier H1419 Temperature feedback multiplexing failure H1419 Power stage recognition: unrecognised frame size H220 Hardware fault - return	HF05	Hardware fault - return drive to supplier											
Hardware fault return drive to supplier HF07 Data processing error: Watchdog failure Hardware fault return drive to supplier HF08 Data processing error: Level 4 crash Hardware fault return drive to supplier HF09 Data processing error: Heap overflow Hardware fault - return drive to supplier HF10 Data processing error: Router error Hardware fault - return drive to supplier HF11 Data processing error: Access to EEPROM failed Hardware fault - return drive to supplier HF11 Data processing error: Main program stack overflow Hardware fault - return drive to supplier HF12 Data processing error: Software incompatible with hardware Hardware or software fault - return drive to supplier HF13 Data processing error: Software incompatible with hardware Hardware fault - return drive to supplier HF14 Multi-module system interconnect cable error 218 Hardware fault - return drive to supplier HF13 Temperature feedback multiplexing failure 219 Hardware fault - teturn drive to supplier HF20 Power stage recognition: serial code error 220 Hardware fault - teturn dr													
HF07 Data processing error: Watchdog failure Hardware fault - return drive to supplier HF03 Data processing error: Level 4 crash Hardware fault - return drive to supplier HF09 Data processing error: Router error Hardware fault - return drive to supplier HF10 Data processing error: Router error Hardware fault - return drive to supplier HF11 Data processing error: Router error Hardware fault - return drive to supplier HF12 Data processing error: Roiter error Hardware fault - return drive to supplier HF12 Data processing error: Software to EEPROM failed Hardware fault - return drive to supplier HF13 Data processing error: Software incompatible with hardware Hardware fault - return drive to supplier HF14 Data processing error: Software incompatible with hardware Hardware fault - return drive to supplier HF15 Multi-module system thermistor short circuit 217 Hardware fault - return drive to supplier HF14 Hardware fault - return drive to supplier HF15 Multi-module system interconnect cable error 218 Hardware fault - return drive to supplier	HF06	Data processing error: Reserved exception											
Hardware fault - return drive to supplier HF08 Data processing error: Level 4 crash Hardware fault - return drive to supplier HF09 Data processing error: Heap overflow Hardware fault - return drive to supplier HF10 Data processing error: Router error Hardware fault - return drive to supplier HF11 Data processing error: Access to EEPROM failed Hardware fault - return drive to supplier HF12 Data processing error: Main program stack overflow Hardware fault - return drive to supplier HF13 Data processing error: Software lanct-metal drive to supplier HF14 Matdware fault - return drive to supplier HF17 Multi-module system thermistor short circuit 217 Hardware fault - return drive to supplier HF18 Multi-module system interconnect cable error 218 Hardware fault - return drive to supplier HF19 Temperature feedback multiplexing failure 219 Hardware fault - return drive to supplier HF18 Multi-module system interconnect cable error 220 Hardware fault - return drive to supplier HF219 Power stage recognition: unrecognised frame size		Hardware fault - return drive to supplier											
HF03 Data processing error: Level 4 crash Hardware fault - return drive to supplier HF09 Data processing error: Neap overflow Hardware fault - return drive to supplier HF10 Data processing error: Access to EEPROM failed Hardware fault - return drive to supplier HF11 Data processing error: Access to EEPROM failed Hardware fault - return drive to supplier HF12 Data processing error: Main program stack overflow Hardware fault - return drive to supplier HF13 Data processing error: Software incompatible with hardware Hardware or software fault - return drive to supplier HF14 Multi-module system interconnect cable error HF18 Multi-module system interconnect cable error 218 Hardware fault - return drive to supplier HF19 Temperature feedback multiplexing failure 219 Hardware fault - return drive to supplier HF20 Power stage recognition: serial code error 220 Hardware fault - return drive to supplier HF21 Power stage recognition: surli module frame size 221 Hardware fault - return drive to supplier HF22 Power stage recognition: multi module frame size mi	HF07	Data processing error: Watchdog failure											
Hardware fault - return drive to supplier HF09 Data processing error: Heap overflow Hardware fault - return drive to supplier HF10 Data processing error: Router error Hardware fault - return drive to supplier HF11 Data processing error: Access to EEPROM failed Hardware fault - return drive to supplier HF12 Data processing error: Main program stack overflow Hardware fault - return drive to supplier HF12 Data processing error: Software incompatible with hardware Hardware fault - return drive to supplier HF13 Data processing error: Software incompatible with hardware Hardware fault - return drive to supplier HF14 Multi-module system intermistor short circuit 217 Hardware fault - return drive to supplier HF18 Multi-module system interconnect cable error 218 Hardware fault - return drive to supplier HF19 Temperature feedback multiplexing failure 220 Hardware fault - return drive to supplier HF21 Power stage recognition: unrecognised frame size 221 Hardware fault - return drive to supplier HF22 Power stage recognition: multi module voltage rating mismatch		Hardware fault - return drive to supplier											
HF09 Data processing error: Heap overflow Hardware fault - return drive to supplier HF10 Data processing error: Router error Hardware fault - return drive to supplier HF11 Data processing error: Access to EEPROM failed Hardware fault - return drive to supplier HF12 Data processing error: Main program stack overflow Hardware fault - return drive to supplier HF13 Data processing error: Software incompatible with hardware Hardware fault - return drive to supplier HF13 Data processing error: Software incompatible with hardware Hardware or software fault - return drive to supplier HF14 Multi-module system thermistor short circuit 217 Hardware fault - return drive to supplier HF18 Multi-module system interconnect cable error 218 Hardware fault - return drive to supplier HF20 Power stage recognition: serial code error 220 Hardware fault - return drive to supplier HF21 Power stage recognition: unrecognised frame size 221 Hardware fault - return drive to supplier HF22 Power stage recognition: multi module frame size mismatch 222 Hardware fault - return d	HF08	Data processing error: Level 4 crash											
Hardware fault - return drive to supplier HF10 Data processing error: Router error Hardware fault - return drive to supplier HF11 Data processing error: Access to EEPROM failed Hardware fault - return drive to supplier HF12 Data processing error: Main program stack overflow Hardware fault - return drive to supplier HF13 Data processing error: Software incompatible with hardware Hardware or software fault - return drive to supplier HF14 Multi-module system thermistor short circuit 217 Hardware fault - return drive to supplier HF18 Multi-module system interconnect cable error 218 Hardware fault - return drive to supplier HF19 Temperature feedback multiplexing failure 219 Hardware fault - return drive to supplier HF20 Power stage recognition: serial code error 220 Hardware fault - return drive to supplier HF22 Power stage recognition: untercognised frame size HF24 Power stage recognition: multi module frame size mismatch 222 Hardware fault - return drive to supplier HF23 Power stage recognition: multi module trate size HF24 Power sta													
HF10 Data processing error: Router error Hardware fault - return drive to supplier HF11 Data processing error: Access to EEPROM failed Hardware fault - return drive to supplier HF12 Data processing error: Main program stack overflow Hardware fault - return drive to supplier HF13 Data processing error: Software incompatible with hardware Hardware or software fault - return drive to supplier HF17 Multi-module system thermistor short circuit 217 Hardware fault - return drive to supplier HF18 Multi-module system interconnect cable error 218 Hardware fault - return drive to supplier HF19 Temperature feedback multiplexing failure 219 Hardware fault - return drive to supplier HF20 Power stage recognition: serial code error 220 Hardware fault - return drive to supplier HF21 Power stage recognition: unrecognised frame size 2219 Hardware fault - return drive to supplier HF22 Power stage recognition: multi module frame size mismatch 222 Hardware fault - return drive to supplier HF23 Power stage recognition: multi module frame size HF24	HF09	Data processing error: Heap overflow											
Hardware fault - return drive to supplier HF11 Data processing error: Access to EEPROM failed Hardware fault - return drive to supplier HF12 Data processing error: Main program stack overflow Hardware fault - return drive to supplier HF13 Data processing error: Software incompatible with hardware Hardware or software fault - return drive to supplier HF13 Data processing error: Software incompatible with hardware Hardware or software fault - return drive to supplier HF14 Multi-module system thermistor short circuit 117 Hardware fault - return drive to supplier HF18 Multi-module system interconnect cable error 218 Hardware fault - return drive to supplier HF19 Temperature feedback multiplexing failure 219 Hardware fault - return drive to supplier HF20 Power stage recognition: unrecognised frame size 221 Hardware fault - return drive to supplier HF21 Power stage recognition: multi module voltage rating mismatch 222 Hardware fault - return drive to supplier HF22 Power stage recognition: multi module voltage rating mismatch 223 Hardware fault - return drive to supplier		Hardware fault - return drive to supplier											
HF11 Data processing error: Access to EEPROM failed Hardware fault - return drive to supplier HF12 Data processing error: Main program stack overflow Hardware fault - return drive to supplier HF13 Data processing error: Software incompatible with hardware Hardware or software fault - return drive to supplier HF13 Data processing error: Software incompatible with hardware Hardware or software fault - return drive to supplier HF14 Multi-module system thermistor short circuit 217 Hardware fault - return drive to supplier HF18 Multi-module system interconnect cable error 218 Hardware fault - return drive to supplier HF20 Power stage recognition: serial code error 219 Hardware fault - return drive to supplier HF21 Power stage recognition: unrecognised frame size 220 Hardware fault - return drive to supplier HF22 Power stage recognition: multi module frame size 221 Hardware fault - return drive to supplier HF22 Power stage recognition: multi module voltage rating mismatch 222 Hardware fault - return drive to supplier HF23 Power stage recognition: multi module voltage ra	HF10	Data processing error: Router error											
Hardware fault - return drive to supplier HF12 Data processing error: Main program stack overflow Hardware fault - return drive to supplier HF13 Data processing error: Software incompatible with hardware Hardware or software fault - return drive to supplier HF17 Multi-module system thermistor short circuit 217 Hardware fault - return drive to supplier HF18 Multi-module system interconnect cable error 218 Hardware fault - return drive to supplier HF20 Power stage recognition: serial code error 219 Hardware fault - return drive to supplier HF21 Power stage recognition: serial code error 220 Hardware fault - return drive to supplier HF21 Power stage recognition: unrecognised frame size 221 Hardware fault - return drive to supplier HF22 Power stage recognition: multi module frame size mismatch 222 Hardware fault - return drive to supplier HF23 Power stage recognition: multi module voltage rating mismatch 223 Hardware fault - return drive to supplier HF24 Power stage recognition: unrecognised drive size 223 Hardware fault - return drive to supplier													
HF12 Data processing error: Main program stack overflow Hardware fault - return drive to supplier HF13 Data processing error: Software incompatible with hardware Hardware or software fault - return drive to supplier HF17 Multi-module system thermistor short circuit 217 Hardware fault - return drive to supplier HF18 Multi-module system interconnect cable error 218 Hardware fault - return drive to supplier HF20 Temperature feedback multiplexing failure 219 Hardware fault - return drive to supplier HF219 Temperature feedback multiplexing failure 210 Hardware fault - return drive to supplier HF219 Power stage recognition: serial code error 220 Hardware fault - return drive to supplier HF21 Power stage recognition: unrecognised frame size 221 Hardware fault - return drive to supplier HF22 Power stage recognition: multi module frame size mismatch 222 Hardware fault - return drive to supplier HF23 Power stage recognition: multi module voltage rating mismatch 223 Hardware fault - return drive to supplier HF24 Power stage recognition: unrecogn	HF11												
Hardware fault - return drive to supplier HF13 Data processing error: Software incompatible with hardware Hardware or software fault - return drive to supplier HF17 Multi-module system thermistor short circuit 217 Hardware fault - return drive to supplier HF18 Multi-module system interconnect cable error 218 Hardware fault - return drive to supplier HF19 Temperature feedback multiplexing failure 219 Hardware fault - return drive to supplier HF20 Power stage recognition: serial code error 220 Hardware fault - return drive to supplier HF21 Power stage recognition: unrecognised frame size HF21 Power stage recognition: multi module frame size mismatch HF22 Power stage recognition: multi module voltage rating mismatch 223 Hardware fault - return drive to supplier HF23 Power stage recognition: multi module voltage rating mismatch 223 Hardware fault - return drive to supplier HF23 Power stage recognition: unrecognised drive size 224 Hardware fault - return drive to supplier HF24 Power stage recognition: unrecognised drive size 224 Hardware f													
HF13 Data processing error: Software incompatible with hardware Hardware or software fault - return drive to supplier HF17 Multi-module system thermistor short circuit 217 Hardware fault - return drive to supplier HF18 Multi-module system interconnect cable error 218 Hardware fault - return drive to supplier HF19 Temperature feedback multiplexing failure 219 Hardware fault - return drive to supplier HF20 Power stage recognition: serial code error 220 Hardware fault - return drive to supplier HF21 Power stage recognition: unrecognised frame size 221 Hardware fault - return drive to supplier HF22 Power stage recognition: multi module frame size mismatch 222 Hardware fault - return drive to supplier HF23 Power stage recognition: multi module voltage rating mismatch 223 Hardware fault - return drive to supplier HF24 Power stage recognition: unrecognised drive size 223 Hardware fault - return drive to supplier HF24 Power stage recognition: unrecognised drive size 224 Hardware fault - return drive to supplier HF25 Current fee	HF12												
Hardware or software fault - return drive to supplier HF17 Multi-module system thermistor short circuit 217 Hardware fault - return drive to supplier HF18 Multi-module system interconnect cable error 218 Hardware fault - return drive to supplier HF19 Temperature feedback multiplexing failure 219 Hardware fault - return drive to supplier HF20 Power stage recognition: serial code error 220 Hardware fault - return drive to supplier HF21 Power stage recognition: unrecognised frame size 221 Hardware fault - return drive to supplier HF22 Power stage recognition: multi module frame size mismatch 222 Hardware fault - return drive to supplier HF23 Power stage recognition: multi module voltage rating mismatch 223 Hardware fault - return drive to supplier HF23 Power stage recognition: unrecognised drive size 223 Hardware fault - return drive to supplier HF24 Power stage recognition: unrecognised drive size 224 Hardware fault - return drive to supplier HF24 Power stage recognition: unrecognised drive size 224 Hardware fault - retur													
HF17Multi-module system thermistor short circuit217Hardware fault - return drive to supplierHF18Multi-module system interconnect cable error218Hardware fault - return drive to supplierHF19Temperature feedback multiplexing failure219Hardware fault - return drive to supplierHF20Power stage recognition: serial code error220Hardware fault - return drive to supplierHF21Power stage recognition: unrecognised frame size221Hardware fault - return drive to supplierHF22Power stage recognition: multi module frame size mismatch222Hardware fault - return drive to supplierHF23Power stage recognition: multi module voltage rating mismatch223Hardware fault - return drive to supplierHF24Power stage recognition: unrecognised drive size223Hardware fault - return drive to supplierHF24Power stage recognition: multi module voltage rating mismatch225Hardware fault - return drive to supplierHF25Current feedback offset error226Hardware fault - return drive to supplierHF25Soft start relay failed to close, soft start monitor failed or braking IGBT short circuit at power up	HF13												
217Hardware fault - return drive to supplierHF18Multi-module system interconnect cable error218Hardware fault - return drive to supplierHF19Temperature feedback multiplexing failure219Hardware fault - return drive to supplierHF20Power stage recognition: serial code error220Hardware fault - return drive to supplierHF21Power stage recognition: serial code error221Hardware fault - return drive to supplierHF22Power stage recognition: unrecognised frame size221Hardware fault - return drive to supplierHF22Power stage recognition: multi module frame size mismatch222Hardware fault - return drive to supplierHF23Power stage recognition: multi module voltage rating mismatch223Hardware fault - return drive to supplierHF24Power stage recognition: unrecognised drive size224Hardware fault - return drive to supplierHF24Power stage recognition: unrecognised drive size224Hardware fault - return drive to supplierHF25Current feedback offset error225Hardware fault - return drive to supplierHF26Soft start relay failed to close, soft start monitor failed or braking IGBT short circuit at power up													
HF18 Multi-module system interconnect cable error 218 Hardware fault - return drive to supplier HF19 Temperature feedback multiplexing failure 219 Hardware fault - return drive to supplier HF20 Power stage recognition: serial code error 220 Hardware fault - return drive to supplier HF21 Power stage recognition: unrecognised frame size 221 Hardware fault - return drive to supplier HF22 Power stage recognition: multi module frame size mismatch 222 Hardware fault - return drive to supplier HF22 Power stage recognition: multi module voltage rating mismatch 223 Hardware fault - return drive to supplier HF23 Power stage recognition: unrecognised drive size 223 Hardware fault - return drive to supplier HF24 Power stage recognition: unrecognised drive size 224 Hardware fault - return drive to supplier HF25 Current feedback offset error 225 Hardware fault - return drive to supplier HF26 Soft start relay failed to close, soft start monitor failed or braking IGBT short circuit at power up													
218Hardware fault - return drive to supplierHF19Temperature feedback multiplexing failure219Hardware fault - return drive to supplierHF20Power stage recognition: serial code error220Hardware fault - return drive to supplierHF21Power stage recognition: unrecognised frame size221Hardware fault - return drive to supplierHF22Power stage recognition: multi module frame size mismatch222Hardware fault - return drive to supplierHF22Power stage recognition: multi module frame size mismatch223Hardware fault - return drive to supplierHF23Power stage recognition: multi module voltage rating mismatch223Hardware fault - return drive to supplierHF24Power stage recognition: unrecognised drive size224Hardware fault - return drive to supplierHF24Power stage recognition: unrecognised drive size224Hardware fault - return drive to supplierHF25Current feedback offset error225Hardware fault - return drive to supplierHF26Soft start relay failed to close, soft start monitor failed or braking IGBT short circuit at power up													
HF19 Temperature feedback multiplexing failure 219 Hardware fault - return drive to supplier HF20 Power stage recognition: serial code error 220 Hardware fault - return drive to supplier HF21 Power stage recognition: unrecognised frame size 221 Hardware fault - return drive to supplier HF22 Power stage recognition: multi module frame size mismatch 222 Hardware fault - return drive to supplier HF22 Power stage recognition: multi module frame size mismatch 221 Hardware fault - return drive to supplier HF22 Power stage recognition: multi module voltage rating mismatch 222 Hardware fault - return drive to supplier HF23 Power stage recognition: unrecognised drive size 223 Hardware fault - return drive to supplier HF24 Power stage recognition: unrecognised drive size 224 Hardware fault - return drive to supplier HF25 Current feedback offset error 225 Hardware fault - return drive to supplier HF26 Soft start relay failed to close, soft start monitor failed or braking IGBT short circuit at power up													
219Hardware fault - return drive to supplierHF20Power stage recognition: serial code error220Hardware fault - return drive to supplierHF21Power stage recognition: unrecognised frame size221Hardware fault - return drive to supplierHF22Power stage recognition: multi module frame size mismatch222Hardware fault - return drive to supplierHF22Power stage recognition: multi module frame size mismatch223Hardware fault - return drive to supplierHF23Power stage recognition: multi module voltage rating mismatch223Hardware fault - return drive to supplierHF24Power stage recognition: unrecognised drive size224Hardware fault - return drive to supplierHF24Power stage recognition: unrecognised drive size224Hardware fault - return drive to supplierHF25Current feedback offset error225Hardware fault - return drive to supplierHF26Soft start relay failed to close, soft start monitor failed or braking IGBT short circuit at power up	-												
HF20Power stage recognition: serial code error220Hardware fault - return drive to supplierHF21Power stage recognition: unrecognised frame size221Hardware fault - return drive to supplierHF22Power stage recognition: multi module frame size mismatch222Hardware fault - return drive to supplierHF23Power stage recognition: multi module voltage rating mismatch223Hardware fault - return drive to supplierHF24Power stage recognition: unrecognised drive size224Hardware fault - return drive to supplierHF24Power stage recognition: unrecognised drive size224Hardware fault - return drive to supplierHF25Current feedback offset error225Hardware fault - return drive to supplierHF26Soft start relay failed to close, soft start monitor failed or braking IGBT short circuit at power up													
220 Hardware fault - return drive to supplier HF21 Power stage recognition: unrecognised frame size 221 Hardware fault - return drive to supplier HF22 Power stage recognition: multi module frame size mismatch 222 Hardware fault - return drive to supplier HF23 Power stage recognition: multi module voltage rating mismatch 223 Hardware fault - return drive to supplier HF24 Power stage recognition: unrecognised drive size 224 Hardware fault - return drive to supplier HF25 Current feedback offset error 225 Hardware fault - return drive to supplier HF26 Soft start relay failed to close, soft start monitor failed or braking IGBT short circuit at power up													
HF21Power stage recognition: unrecognised frame size221Hardware fault - return drive to supplierHF22Power stage recognition: multi module frame size mismatch222Hardware fault - return drive to supplierHF23Power stage recognition: multi module voltage rating mismatch223Hardware fault - return drive to supplierHF24Power stage recognition: unrecognised drive size224Hardware fault - return drive to supplierHF25Current feedback offset error225Hardware fault - return drive to supplierHF26Soft start relay failed to close, soft start monitor failed or braking IGBT short circuit at power up	-												
221Hardware fault - return drive to supplierHF22Power stage recognition: multi module frame size mismatch222Hardware fault - return drive to supplierHF23Power stage recognition: multi module voltage rating mismatch223Hardware fault - return drive to supplierHF24Power stage recognition: unrecognised drive size224Hardware fault - return drive to supplierHF25Current feedback offset error225Hardware fault - return drive to supplierHF26Soft start relay failed to close, soft start monitor failed or braking IGBT short circuit at power up													
HF22Power stage recognition: multi module frame size mismatch222Hardware fault - return drive to supplierHF23Power stage recognition: multi module voltage rating mismatch223Hardware fault - return drive to supplierHF24Power stage recognition: unrecognised drive size224Hardware fault - return drive to supplierHF25Current feedback offset error225Hardware fault - return drive to supplierHF26Soft start relay failed to close, soft start monitor failed or braking IGBT short circuit at power up													
222 Hardware fault - return drive to supplier HF23 Power stage recognition: multi module voltage rating mismatch 223 Hardware fault - return drive to supplier HF24 Power stage recognition: unrecognised drive size 224 Hardware fault - return drive to supplier HF25 Current feedback offset error 225 Hardware fault - return drive to supplier HF26 Soft start relay failed to close, soft start monitor failed or braking IGBT short circuit at power up													
HF23Power stage recognition: multi module voltage rating mismatch223Hardware fault - return drive to supplierHF24Power stage recognition: unrecognised drive size224Hardware fault - return drive to supplierHF25Current feedback offset error225Hardware fault - return drive to supplierHF26Soft start relay failed to close, soft start monitor failed or braking IGBT short circuit at power up													
223 Hardware fault - return drive to supplier HF24 Power stage recognition: unrecognised drive size 224 Hardware fault - return drive to supplier HF25 Current feedback offset error 225 Hardware fault - return drive to supplier HF26 Soft start relay failed to close, soft start monitor failed or braking IGBT short circuit at power up													
HF24 Power stage recognition: unrecognised drive size 224 Hardware fault - return drive to supplier HF25 Current feedback offset error 225 Hardware fault - return drive to supplier HF26 Soft start relay failed to close, soft start monitor failed or braking IGBT short circuit at power up													
224 Hardware fault - return drive to supplier HF25 Current feedback offset error 225 Hardware fault - return drive to supplier HF26 Soft start relay failed to close, soft start monitor failed or braking IGBT short circuit at power up	HF24												
HF25 Current feedback offset error 225 Hardware fault - return drive to supplier HF26 Soft start relay failed to close, soft start monitor failed or braking IGBT short circuit at power up													
225 Hardware fault - return drive to supplier HF26 Soft start relay failed to close, soft start monitor failed or braking IGBT short circuit at power up													
HF26 Soft start relay failed to close, soft start monitor failed or braking IGBT short circuit at power up		Hardware fault - return drive to supplier											
	HF26												
HF27 Power stage thermistor 1 fault	HF27												
227 Hardware fault - return drive to supplier	227	Hardware fault - return drive to supplier											

Safety Information	ProductMechanicalElectricalGettingBasicRunning the motorOptimisationSmartcard operationOnboard PLCAdvancedTechnical 											
Trip	Diagnosis											
HF28	Power stage thermistor 2 fault or internal fan fault (size 3 and larger)											
228	Hardware fault - return drive to supplier											
HF29	Control board thermistor fault											
229	Hardware fault - return drive to supplier											
HF30	CCT wire break trip from power module											
230	lardware fault - return drive to supplier											
HF31	Aux fan failure from power module											
231	Replace auxiliary fan											
HF32	Power stage - a module has not powered up in a multi-module parallel drive											
232	Check AC power supply											
lt.AC	Output current overload timed out (I ² t) - accumulator value can be seen in Pr 4.19											
20	Ensure the load is not jammed / sticking Check the load on the motor has not changed If seen during an autotune in servo mode, ensure that the motor rated current Pr 0.46 (Pr 5.07) or Pr 21.07 is ≤Heavy Duty current rating of the drive Tune the rated speed parameter (closed loop vector only) Check feedback device signal for noise Check the feedback device mechanical coupling											
lt.br	Braking resistor overload timed out (I ² t) – accumulator value can be seen in Pr 10.39											
19	Ensure the values entered in Pr 10.30 and Pr 10.31 are correct Increase the power rating of the braking resistor and change Pr 10.30 and Pr 10.31 If an external thermal protection device is being used and the braking resistor software overload is not required, set Pr 10.30 or Pr 10.31 to 0 to disable the trip											
L.SYnC	Drive failed to synchronise to the supply voltage in Regen mode											
39	Refer to the Diagnostics chapter in the Unidrive SP Regen Installation Guide.											
O.CtL	Drive control board over temperature											
23	Check cubicle / drive fans are still functioning correctly Check cubicle ventilation paths Check cubicle door filters Check ambient temperature Reduce drive switching frequency											
O.ht1	Power device over temperature based on thermal model											
21	Reduce drive switching frequency Reduce duty cycle Decrease acceleration / deceleration rates Reduce motor load											
O.ht2	Heatsink over temperature											
22	Check cubicle / drive fans are still functioning correctly Check cubicle ventilation paths Check cubicle door filters Increase ventilation Decrease acceleration / deceleration rates Reduce drive switching frequency Reduce duty cycle Reduce motor load											
Oht2.P	Power module heatsink over temperature											
105	Check cubicle / drive fans are still functioning correctly Check cubicle ventilation paths Check cubicle door filters Increase ventilation Decrease acceleration / deceleration rates Reduce drive switching frequency Reduce duty cycle											
	Reduce motor load											

Safety Information	Product Mechanical Electrical Getting Basic Parameters Running the motor Optimisation Optimisation Started Parameters Parameters Optimisation Optis										
Trip	Diagnosis										
O.ht3	Drive over-temperature based on thermal model										
27	The drive will attempt to stop the motor before tripping. If the motor does not stop in 10s the drive trips immediately. Check cubicle / drive fans are still functioning correctly Check cubicle ventilation paths Check cubicle door filters Increase ventilation Decrease acceleration / deceleration rates Reduce duty cycle Reduce motor load										
Oht4.P	Power module rectifier over temperature or input snubber resistor over temperature (size 4 and above)										
102	Check for supply imbalance Check for supply disturbance such as notching from a DC drive Check cubicle / drive fans are still functioning correctly Check cubicle ventilation paths Check cubicle door filters Increase ventilation Decrease acceleration / deceleration rates Reduce drive switching frequency Reduce duty cycle Reduce motor load										
OI.AC	Instantaneous output over current detected: peak output current greater than 225%										
3	Acceleration /deceleration rate is too short. If seen during autotune reduce voltage boost Pr 5.15 Check for short circuit on output cabling Check integrity of motor insulation Check feedback device wiring Check feedback device mechanical coupling Check feedback signals are free from noise Is motor cable length within limits for that frame size? Reduce the values in speed loop gain parameters – Pr 3.10 , Pr 3.11 and Pr 3.12 (closed loop vector and servo modes only) Has offset measurement test been completed? (servo mode only)										
OIAC.P	Reduce the values in current loop gain parameters - Pr 4.13 and Pr 4.14 (closed loop vector and servo modes only) Power module over current detected from the module output currents										
0IAC.P	Acceleration /deceleration rate is too short. If seen during autotune reduce voltage boost Pr 5.15 Check for short circuit on output cabling Check integrity of motor insulation Check feedback device wiring Check feedback device mechanical coupling Check feedback signals are free from noise Is motor cable length within limits for that frame size? Reduce the values in speed loop gain parameters – Pr 3.10 , Pr 3.11 and Pr 3.12 (closed loop vector and servo modes only) Has offset measurement test been completed? (servo mode only) Reduce the values in current loop gain parameters - Pr 4.13 and Pr 4.14 (closed loop vector and servo modes only)										
Ol.br	Braking transistor over-current detected: short circuit protection for the braking transistor activated										
4	Check braking resistor value is greater than or equal to the minimum resistance value Check braking resistor insulation										
Olbr.P	Power module braking IGBT over current										
103	Check braking resistor wiring Check braking resistor value is greater than or equal to the minimum resistance value Check braking resistor insulation										
OldC.P	Power module over current detected from IGBT on state voltage monitoring										
109	Vce IGBT protection activated. Check motor and cable insulation.										
O.Ld1	Digital output overload: total current drawn from 24V supply and digital outputs exceeds 200mA										
26	Check total load on digital outputs (terminals 24,25,26)and +24V rail (terminal 22)										
O.SPd	Motor speed has exceeded the over speed threshold										
7	Increase the over speed trip threshold in Pr 3.08 (closed loop modes only) Speed has exceeded 1.2 x Pr 1.06 or Pr 1.07 (open loop mode) Reduce the speed loop P gain (Pr 3.10) to reduce the speed overshoot (closed loop modes only)										

	roduct Mechanical Electrical Getting Basic Running the notor Optimisation Installation Installation Started Parameters Motor Optimisation Optis Optis Optimisation Optimisatio										
Trip	Diagnosis										
٥V	DC bus voltage has exceeded the peak level or the maximum continuous level for 15 seconds										
2	Increase deceleration ramp (Pr 0.04) Decrease braking resistor value (staying above the minimum value) Check nominal AC supply level Check for supply disturbances which could cause the DC bus to rise – voltage overshoot after supply recovery from a notch induced by DC drives. Check motor insulation Drive voltage rating Peak voltage Maximum continuous voltage level (15s) 200 415 410										
	400 830 815										
	575 990 970 690 1190 1175										
	If the drive is operating in low voltage DC mode the overvoltage trip level is 1.45 x Pr 6.46 .										
OV.P	Power module DC bus voltage has exceeded the peak level or the maximum continuous level for 15 seconds										
	Increase deceleration ramp (Pr 0.04) Decrease braking resistor value (staying above the minimum value) Check nominal AC supply level Check for supply disturbances which could cause the DC bus to rise – voltage overshoot after supply recovery from a notch indu- by DC drives.										
106	Drive voltage ratingPeak voltageMaximum continuous voltage level (15s)20041541040083081557599097069011901175If the drive is operating in low voltage DC mode the overvoltage trip level is 1.45 x Pr 6.46.										
PAd	Keypad has been removed when the drive is receiving the speed reference from the keypad										
34	Fit keypad and reset Change speed reference selector to select speed reference from another source										
Ph	AC voltage input phase loss or large supply imbalance detected										
32	Ensure all three phases are present and balanced Check input voltage levels are correct (at full load) NOTE Load level must be between 50 and 100% for the drive to trip under phase loss conditions. The drive will attempt to stop the motor before this trip is initiated.										
Ph.P	Power module phase loss detection										
107	Ensure all three phases are present and balanced Check input voltage levels are correct (at full load)										
PS	Internal power supply fault										
5	Remove any Solutions Modules and reset Check integrity of interface ribbon cables and connections (size 4,5,6 only) Hardware fault - return drive to supplier										
PS.10V	10V user power supply current greater than 10mA										
8	Check wiring to terminal 4 Reduce load on terminal 4										
PS.24V	24V internal power supply overload										
9	 The total user load of the drive and Solutions Modules has exceeded the internal 24V power supply limit. The user load consists of the drive's digital outputs, the SM-I/O Plus digital outputs, the drive's main encoder supply and the SM-Universal Encoder Plus encoder supply. Reduce load and reset Provide an external 24V >50W power supply Remove any Solutions Modules and reset 										
PS.P	Power module power supply fail										
108	Remove any Solutions Modules and reset Check integrity of interface ribbon cables and connections (size 4,5,6 only) Hardware fault - return drive to supplier										
PSAVE.Er	Power down save parameters in the EEPROM are corrupt										
37	Indicates that the power was removed when power down save parameters were being saved. The drive will revert back to the power down parameter set that was last saved successfully. Perform a user save (Pr xx.00 to 1000 or 1001 and reset the drive) or power down the drive normally to ensure this trip does or occur the next time the drive is powered up.										

Safety Information	Product nformation	Mechanical Installation	Electrical Installation	Getting Started	Basic Parameters	Running the motor	Optimisation	Smartcard operation	Onboard PLC	Advanced Parameters	Technical Data	Diagnostics	UL Listing Information
Trip Diagnosis													
rS	Failu	Failure to measure resistance during autotune or when starting in open loop vector mode 0 or 3											
33	Chec	k motor po	wer connec	ction cont	inuity								
SAVE.Er	User	User save parameters in the EEPROM are corrupt											
36	Indicates that the power was removed when user parameters were being saved. The drive will revert back to the user parameter set that was last saved successfully. Perform a user save (Pr xx.00 to 1000 or 1001 and reset the drive) to ensure this trip does or occur the next time the drive is powered up.									e is			
SCL	Drive	e RS485 se	erial comm	s loss to	remote k	eypad							
30	Refit the cable between the drive and keypad Check cable for damage Replace cable Replace keypad												
SLX.dF	Solu	tions Mod	ule slot X t	rip: Solu	tions Mod	lule type fi	itted in slot	X change	d				
204,209,2	14 Save	parameter	s and reset	t									

Safety Pr Information Info	oduct Mechanie rmation Installation		Getting Started	Basic Parameters	Running the motor	Optimisation	Smartcard operation	Onboard PLC	Advanced Parameters	Technical Data	Diagnostics	UL Listing Information	
Trip						Diagnos	sis						
SLX.Er	Solutions Me	odule slot X f	trip: Solu	tions Module in slot X has detected a fault									
	Feedback m	odule catego	ory										
	Check value Plus and SM-			gnostics se	ction in the	e relevant So						ncoder	
	Error code	Module			Descriptio	on	Diagnostic						
	0	All		o trip			No fault de		er supply w	viring and	encoder cu	rrent	
	1	SM-Univer Encoder P	lus Er	coder powe	requireme @ 8V and	nt Maximu 5V	im current :	= 200mA	@ 15V, or 3				
		SM-Resolv	/er Ex	citation out	put short ci	ircuit	Check the Check cat		output wiri	ng.			
	2	SM-Univer Encoder Plu SM-Resolv	us & Wi	ire break			Check wiri	ing of feed oply voltag	lback signa e or excitat				
	3	SM-Univer Encoder P		nase offset i nning	ncorrect wl	hilst	Check end Check the	coder shiel integrity c	0	der mecha	anical moun	iting	
	4	SM-Univer Encoder P		edback dev lure	rice commu	unications	Ensure ba Check end Replace fe	ud rate is coder wirin eedback d	ig evice				
	5	SM-Univer Encoder P	lus	necksum or	CRC error		Check the encoder signal for noise Check the encoder cable shielding						
	6	SM-Univer Encoder Pl	IEn	ncoder has i	ndicated a	n error	Replace encoder						
	7	SM-Univer Encoder Pl	sal	Initialisation failed			Check the Check end Check sup Replace fe	oder wirin oply voltag	ig e level	is entered	into Pr 15/1	6/17.15	
202,207,212	8	SM-Univer Encoder P		ito configura Is been requ			the number	er of turns		7.09) and	d manually e the equiva 1 7.10)		
	9	SM-Univer Encoder P	1 1 1 1	otor thermis		Check motor temperature Check thermistor continuity							
	10	10 SM-Universal Encoder Plus			tor short ci	rcuit	Check motor thermistor wiring Replace motor / motor thermistor						
	11	SM-Univer Encoder Pl	sal Fa	ilure of the sition alignr tialisation		0	Check encoder cable shield				or noise.		
		SM-Resolv	/er Po	Poles not compatible with motor			Check that the correct number of resolver poles has been set in Pr 15/16/17.15.						
	12	SM-Univer Encoder P		ncoder type entified durii			Check encoder type can be auto-configured. Check encoder wiring. Enter parameters manually.						
	13	SM-Univer Encoder P	sai lus co	umber of end e encoder d nfiguration i	uring auto- is not a pov	- wer of 2	Select a d	ifferent typ	be of encod	er.			
	14	SM-Universal Encoder Plus		umber of con coder position om the enco nfiguration	on within a der during is too large	a turn read auto- e.	Select a d Faulty enc	• •	be of encod	er.			
	15	SM-Univer Encoder P	sal rev lus da eit	The number of periods per revolution calculated from encoder data during auto-configuration is either <2 or >50,000.			Linear motor pole pitch / encoder ppr set up is incorrect or out of parameter range i.e. Pr $5.36 = 0$ or Pr $21.31 = 0$. Faulty encoder.						
	16	SM-Univer Encoder P	sai lus pe	e number o riod for a lir ceeds 255.			Select a d Faulty enc		e of encod	er.			
	74	All	Sc	olutions Mod	lule has ov	verheated	Check am Check cub						

Safety Information	Product Information	Mechanical Installation	Electrical Installation	Getting Started	Basic Parameters	Running the motor	Optimisation	Smartcard operation	Onboard PLC	Advanced Parameters	Technical Data	Diagnostics	UL Listing Information
Trip							Diagnos	is					
SLX.Er	Solu	tions Modu	ule slot X t	rip: Solu	tions Mod	lule in slot	X has dete	cted a fau	llt				
	Auto	Automation (Applications) module category											
							e possible e				ons and S	M-Applicat	ions Lite.
			stics section	n in the re	elevant Sol		lule User Gu	lide for mo	ore informa	ation.			
	Err	ror Code				Trip Desc	ription						
		39 40			k overflow	act supplier							
		40	Paramete			ici suppliel							
		42				y paramete	r						
		43	-			only param							
		44	Paramete	r value o	ut of range								
		45	,	nchronisa	ation mode	S							
		46	Unused										
		47 48	Synchroni RS485 no			Sync Maste	er						
		48 49	Invalid RS										
		40 50			e by zero c	or overflow							
		51			-								
51 Array index out of range 52 Control word user trip													
		53	DPL prog	ram inco	mpatible w	ith target							
		54	DPL task	overrun									
		55	Unused										
		56 57			onfiguration								
		57 58	Flash PLC		es not exist								
		59		-		dule as Sy	nc master						
202,207,21	12	60					your supplie	r					
		61	CTNet inv	alid conf	iguration								
		62	CTNet inv	alid baud	d-rate								
		63	CTNet inv	alid node	e ID								
		64	Digital Ou	tput over	load								
		65	Invalid fur	ction blo	ck parame	ter(s)							
		66	User heap	o too larg	е								
		67	RAM file of	loes not	exist or a r	ion-RAM fil	e id has bee	en specifie	d				
		68					to an array						
		69					se cache in	Flash mer	nory				
		70				hile drive e	nabled						
		71			rive mode								
		72 73			er operatio								
		73	Over-tem		ialisation f	allure							
		74	Hardware		hla								
		76				ed. Module	e is not reco	anised.					
		70					odule in slot						
		78					odule in slot						
		79	·				odule in slot						
		80					odule unkno						
		81	APC inter										
		82	Commund	ations to	drive fault	у	·						

	duct Mechanica mation Installation		timisation Smartcard Onboard PLC Parameters Data Diagnostics UL Listing Information										
Trip			Diagnosis										
SLX.Er	Solutions Mo	dule slot X trip: Solutions Module in slot X h	nas detected a fault										
		I/O Expansion) module category											
			ossible error codes for the SM-I/O Plus, SM-I/O Lite, SM-I/O Timer, SM- n in the relevant Solutions Module User Guide for more information.										
	Error code	Module	Reason for fault										
	0	All	No errors										
202,207,212	1	All	Digital output overload										
202,207,212	2	SM-I/O Lite, SM-I/O Timer	Analogue input 1 current input too high (>22mA) or too low (<3mA)										
		SM-PELV	Digital input overload										
	3	SM-PELV	Analogue input 1 current input too low (<3mA)										
	4	SM-PELV	User power supply absent										
	5	SM-I/O Timer	Real time clock communication error										
	74	All	Module over temperature										
SLX.Er	Solutions Module slot X trip: Solutions Module in slot X has detected a fault												
	Fieldbus mod	lule category											
	Check value in Pr 15/16/17.50 . The following table lists the possible error codes for the Fieldbus modules. See the <i>Diagnostics</i> section in the relevant Solutions Module User Guide for more information.												
	Error code	Module	Trip Description										
	0	All	No trip										
	52	SM-PROFIBUS-DP, SM-Interbus, SM-DeviceNet, SM-CANOpen	User control word trip										
	61	SM-PROFIBUS-DP, SM-Interbus, SM-DeviceNet, SM-CANOpen, SM-SERCOS	Configuration error										
	64	SM-DeviceNet	Expected packet rate timeout										
	65	SM-PROFIBUS-DP, SM-Interbus, SM-DeviceNet, SM-CANOpen, SM-SERCOS	Network loss										
	66	SM-PROFIBUS-DP	Critical link failure										
		SM-CAN, SM-DeviceNet, SM-CANOpen	Bus off error										
	69	SM-CAN	No acknowledgement										
202,207,212	70	All (except SM-Ethernet)	Flash transfer error										
		SM-Ethernet	No valid menu data available for the module from the drive										
	74	All	Solutions module over temperature										
	75	SM-Ethernet	The drive is not responding										
	76	SM-Ethernet	The Modbus connection has timed out										
	80	All (except SM-SERCOS)	Inter-option communications error										
	81	All (except SM-SERCOS)	Communications error to slot 1										
	82	All (except SM-SERCOS)	Communications error to slot 2										
	83	All (except SM-SERCOS)	Communications error to slot 3										
	84	SM-Ethernet	Memory allocation error										
	85	SM-Ethernet	File system error										
	86	SM-Ethernet	Configuration file error										
	87	SM-Ethernet	Language file error										
	98	All	Internal watchdog error										
	99	All	Internal software error										

Safety Information	Proc Inform				Basic Parameters	Running the motor	Optimisation	Smartcard operation	Onboard PLC	Advanced Parameters	Technical Data		UL Listing nformation
Trip		Diagnosis											
SLX.Er	r	Solutions Module slot X trip: Solutions Module in slot X has detected a fault											
	(SLM module category Check value in Pr 15/16/17.50. The following table lists the possible error codes for the SM-SLM. See the <i>Diagnostics</i> section in the SM-SLM User Guide for more information. Error Code Trip Description											
		Error Code		detected		Trip Desc	ription						
		0	Power s										
		2		sion is too									
		3	DriveLin	k error									
		4	Incorrec	t switching	frequency	selected							
		5	Feedbad										
		6	Encoder										
		7	Motor of										
202,207,2	212	8 Motor object list version error 9 Performance object number of instances error											
		9 Performance object number of instances error 10 Parameter channel error											
		10 Parameter channel error 11 Drive operating mode incompatible											
		12 Error writing to the SLM EEPROM											
		13	Motor of	oject type ir	correct								
		14		SP object									
		15		object CR									
		16 17		oject CRC e ance object									
		17		SP object									
		10		cer timeout									
		74		s module o	ver temper	ature							
SLX.HF	=	Solutions Module slot X trip: Solutions Module X hardware fault											
200,205,2	/1/1	Ensure Solutions Module is fitted correctly Return Solutions Module to supplier											
SLX.nF		Solutions M	odule slot 2	(trip: Solu	itions Mod	ule has be	en remove	d					
203,208,2	213	Ensure Solut Re-fit Solutio	ns Module		rrectly								
Save parameters and reset drive													
SL.rtd		Solutions M	odule trip:	Drive mod	e has char	nged and S	Solutions M	odule para	ameter ro	uting is no	w incor	rect	
215	I	Press reset. If the trip persists, contact the supplier of the drive.											
SLX.tO		Solutions M	odule slot 2	(trip: Solu	itions Mod	ule watch	dog timeou	t					
201,206,2	211	Press reset. If the trip persists, contact the supplier of the drive.											
t010		User trip defined in 2 nd processor Solutions Module code											
10	Ş	SM-Applications program must be interrogated to find the cause of this trip											
t038	l	User trip defined in 2 nd processor Solutions Module code											
38		SM-Applications program must be interrogated to find the cause of this trip											
t040 to t0		User trip defined in 2 nd processor Solutions Module code											
40 to 89		SM-Applications program must be interrogated to find the cause of this trip											
t099		User trip defined in 2 nd processor Solutions Module code											
99		SM-Applications program must be interrogated to find the cause of this trip											
t101	_	User trip defined in 2 nd processor Solutions Module code											
101 t111 to t1		SM-Applications program must be interrogated to find the cause of this trip User trip defined in 2 nd processor Solutions Module code											
111 to th	_	User trip def SM-Application		-				s trin					
		ow-Application	ns program	i musi de lí	nenogaleo		cause of th	suip					

Safety Information	Product Information	Mechanical Installation	Electrical Installation	Getting Started	Basic Parameters	Running the motor	Optimisation	Smartcard operation	Onboard PLC	Advanced Parameters	Technical Data	Diagnostics	UL Listing Information
Trip		Diagnosis											
t168 to t1	75 Use												
168 to 17	75 SM-/	SM-Applications program must be interrogated to find the cause of this trip											
t216	Use	User trip defined in 2 nd processor Solutions Module code											
216	SM-	SM-Applications program must be interrogated to find the cause of this trip											
th	Moto	Motor thermistor trip											
24	Chee	Check motor temperature Check thermistor continuity Set Pr 7.15 = VOLt and reset the drive to disable this function											
thS		Motor thermistor short circuit											
25	Repl	Check motor thermistor wiring Replace motor / motor thermistor Set Pr 7.15 = VOLt and reset the drive to disable this function											
tunE*	Auto	Autotune stopped before completion											
18	The The	The drive has tripped out during the autotune The red stop key has been pressed during the autotune The secure disable signal (terminal 31) was active during the autotune procedure											
tunE1*		The position feedback did not change or required speed could not be reached during the inertia test (see Pr 5.12)											
11	Cheo Cheo	Ensure the motor is free to turn i.e. brake was released Check feedback device wiring is correct Check feedback parameters are set correctly Check encoder coupling to motor											
tunE2*	Posi	Position feedback direction incorrect or motor could not be stopped during the inertia test (see Pr 5.12)											
12	Chee	Check motor cable wiring is correct Check feedback device wiring is correct Swap any two motor phases (closed loop vector only)											
tunE3*		Drive encoder commutation signals connected incorrectly or measured inertia out of range (see Pr 5.12)											
13		Check motor cable wiring is correct Check feedback device U,V and W commutation signal wiring is correct											
tunE4*		Drive encoder U commutation signal fail during an autotune											
14	Repl	Check feedback device U phase commutation wires continuity Replace encoder											
tunE5*		Drive encoder V commutation signal fail during an autotune											
15		Check feedback device V phase commutation wires continuity Replace encoder											
tunE6*	Driv	Drive encoder W commutation signal fail during an autotune											
16	Repl	Check feedback device W phase commutation wires continuity Replace encoder											
tunE7*			of poles se		-								
17		Check lines per revolution for feedback device Check the number of poles in Pr 5.11 is set correctly											
Unid.P			unidentifie										
110	Ensu	Check all interconnecting cables between power modules Ensure cables are routed away from electrical noise sources											
UP ACC			program: ca				_	e on drive					
98 UD dis (Anot	Disable drive - write access is not allowed when the drive is enabled Another source is already accessing Onboard PLC program - retry once other action is complete											
UP div(Onboard PLC program attempted divide by zero											
90 UP OFL		Check program Onboard PLC program variables and function block calls using more than the allowed RAM space (stack overflow)											
95		Check program variables and function block calls using more than the allowed RAM space (stack overflow)											
UP ovr		Onboard PLC program attempted out of range parameter write											
94		Check program											
UP PAr		Onboard PLC program attempted access to a non-existent parameter											
91		ck program	-										

	Product Mechanical Electrical Getting Basic Running the motor Optimisation Smartcard Onboard Advanced Technical Diagnostics UL Listing formation Installation Installation Started Parameters Optimisation Smartcard Onboard Advanced Technical Diagnostics Information
Trip	Diagnosis
UP ro	Onboard PLC program attempted write to a read-only parameter
92	Check program
UP So	Onboard PLC program attempted read of a write-only parameter
93	Check program
UP udF	Onboard PLC program un-defined trip
97	Check program
UP uSEr	Onboard PLC program requested a trip
96	Check program
UV	DC bus under voltage threshold reached
1	Check AC supply voltage level Drive voltage rating (Vac) Under voltage threshold (Vdc) 200 175 400 350 575 & 690 435

*If a tunE through tunE 7 trip occurs, then after the drive is reset the drive cannot be made to run unless it is disabled via the Secure Disable input (terminal 31), drive enable parameter (Pr 6.15) or the control word (Pr 6.42 and Pr 6.43).

Table 13-2 Serial communications look-up table

No.	Trip	No.	Trip	No.	Trip
1	UV	40 to 89	t040 to t089	184	C.FULL
2	OV	90	UP div0	185	C.Acc
3	OI.AC	91	UP PAr	186	C.rtg
4	Ol.br	92	UP ro	187	C.TyP
5	PS	93	UP So	188	C.cPr
6	Et	94	UP ovr	189	EnC1
7	O.SPd	95	UP OFL	190	EnC2
8	PS.10V	96	UP uSEr	191	EnC3
9	PS.24V	97	UP udF	192	EnC4
10	t010	98	UP ACC	193	EnC5
11	tunE1	99	t099	194	EnC6
12	tunE2	100		195	EnC7
13	tunE3	101	t101	196	EnC8
14	tunE4	102	Oht4.P	197	EnC9
15	tunE5	103	Olbr.P	198	EnC10
16	tunE6	104	OIAC.P	199	DESt
17	tunE7	105	Oht2.P	200	SL1.HF
18	tunE	106	OV.P	201	SL1.tO
19	lt.br	107	PH.P	202	SL1.Er
20	lt.AC	108	PS.P	203	SL1.nF
21	O.ht1	109	OldC.P	204	SL1.dF
22	O.ht2	110	Unid.P	205	SL2.HF
23	O.CtL	111 to 160	t111 to t160	206	SL2.tO
24	th	161	Enc11	207	SL2.Er
25	thS	162	Enc12	208	SL2.nF
26	O.Ld1	163	Enc13	209	SL2.dF
27	O.ht3	164	Enc14	210	SL3.HF
28	cL2	165	Enc15	211	SL3.tO
29	cL3	166	Enc16	212	SL3.Er
30	SCL	167	Enc17	213	SL3.nF
31	EEF	168 to 175	t168 to t175	214	SL3.dF
32	PH	176	EnP.Er	215	SL.rtd
33	rS	177	C.boot	216	t216
34	PAd	178	C.bUSY	217	HF17
35	CL.bit	179	C.Chg	218	HF18
36	SAVE.Er	180	C.OPtn	219	HF19
37	PSAVE.Er	181	C.RdO	220 to 232	HF20 to HF32
38	t038	182	C.Err		
39	L.SYnC	183	C.dAt		

Safety Information	Product Information	Mechanical Installation	Electrical Installation	Getting Started	Basic Parameters	Running the motor	Optimisation	Smartcard operation	Onboard PLC	Advanced Parameters	Diagnostics	UL Listing Information
									-			

The trips can be grouped into the following categories. It should be noted that a trip can only occur when the drive is not tripped or is already tripped but with a trip with a lower priority number.

Table 13-3 Trip categories

Priority	Category	Trips	Comments
1	Hardware faults	HF01 to HF16	These indicate fatal problems and cannot be reset. The drive is inactive after one of these trips and the display shows HFxx . The Drive Healthy relay opens and the serial comms will not function.
2	Non-resetable trips	HF17 to HF32, SL1.HF, SL2.HF, SL3.HF	Cannot be reset. Requires the drive to be powered down.
3	EEF trip	EEF	Cannot be reset unless a code to load defaults is first entered in Pr xx.00 or Pr 11.43.
4	SMARTCARD trips	C.boot, C.Busy, C.Chg, C.OPtn, C.RdO, C.Err, C.dat, C.FULL, C.Acc, C.rtg, C.TyP, C.cpr	Can be reset after 1.0s SMARTCARD trips have priority 5 during power-up
4	Encoder power supply trips PS.24V, EnC1		Can be reset after 1.0s These trips can only override the following priority 5 trips: EnC2 to EnC8 or Enc11 to Enc17
5	Autotune	tunE, tunE1 to tunE7	Can be reset after 1.0s, but the drive cannot be made to run unless it is disabled via the Secure Disable input (terminal 31), <i>Drive enable</i> (Pr 6.15) or the <i>Control word</i> (Pr 6.42 and Pr 6.43).
5	Normal trips with extended reset	OI.AC, OI.Br, OIAC.P, OIBr.P, OldC.P	Can be reset after 10.0s
5	Normal trips	All other trips not included in this table	Can be reset after 1.0s
5	5 Non-important trips th, thS, Old1, cL2, cL3, SCL		If Pr 10.37 is 1 or 3 the drive will stop before tripping
5	Phase loss	PH	The drive attempts to stop before tripping
5	Drive over-heat based on thermal model	O.ht3	The drive attempts to stop before tripping, but if it does not stop within 10s the drive will automatically trip
6	Self-resetting trips	UV	Under voltage trip cannot be reset by the user, but is automatically reset by the drive when the supply voltage is with specification

Although the UV trip operates in a similar way to all other trips, all drive functions can still operate but the drive cannot be enabled. The following differences apply to the UV trip:

- Power-down save user parameters are saved when UV trip is activated except when the main high voltage supply is not active (i.e. operating in Low Voltage DC Supply Mode, Pr 6.44 = 1).
- 2. The UV trip is self-resetting when the DC bus voltage rises above the drive restart voltage level. If another trip is active instead of UV at this point, the trip is not reset.
- The drive can change between using the main high voltage supply and low voltage DC supply only when the drive is in the under voltage condition (Pr 10.16 = 1). The UV trip can only be seen as active if another trip is not active in the under voltage condition.
- 4. When the drive is first powered up a UV trip is initiated if the supply voltage is below the restart voltage level and another trip is not active. This does not cause save power down save parameters to be saved at this point.

13.2 Alarm indications

In any mode an alarm flashes alternately with the data displayed on the 2nd row when one of the following conditions occur. If action is not taken to eliminate any alarm except "Autotune" the drive may eventually trip.

Table 13-4 Alarm indications

Lower display	Description						
br.rS	Braking resistor overload						
	Braking resistor $I^{2}t$ accumulator (Pr 10.37) in the drive has reached 75.0% of the value at which the drive will trip and the braking IGBT is active.						
Hot	Heatsink or control board or inverter IGBT over temperature alarms are active						
	eatsink temperature has reached a threshold and the o O.ht2 if the temperature continues to rise (see the						
	t temperature around the control PCB is approaching nperature threshold (see the O.CtL trip).						
OVLd	Motor overload						
	ccumulator in the drive has reached 75% of the value at will be tripped and the load on the drive is >100%						

1	Safety	Product	Mechanical	Electrical	Getting	Basic	Running the	Optimisation	Smartcard	Onboard	Advanced	Technical	Diagnostics	UL Listing
	Information	Information	Installation	Installation	Started	Parameters	motor	Optimisation	operation	PLC	Parameters	Data	Diagnostics	Information

13.3 Status indications

Table 13-5 Status indications

Upper display	Description	Drive output stage
ACt	Regeneration mode active	
The regen unit	is enabled and synchronised to the	Enabled
supply.		
ACUU	AC Supply loss	
The drive has o	detected that the AC supply has been	Enabled
	mpting to maintain the DC bus voltage	Enabled
by decelerating	the motor.	
*Auto tunE	Autotune in progress	
The autotune p	procedure has been initialised.	Enabled
	E' will flash alternatively on the display.	
dc	DC applied to the motor	
	plying DC injection braking.	Enabled
dEC	Decelerating	
	celerating the motor.	Enabled
	-	
inh	Inhibit	
	hibited and cannot be run.	Disabled
Pr 6.15 is set to	le signal is not applied to terminal 31 or	
	Onboard PLC program is running	
		Not oppliaable
	C program is fitted and running. ay will flash 'PLC' once every 10s.	Not applicable
	· ·	
POS	Positioning	Enabled
	sitioning/orientating the motor shaft.	
rdY	Ready	Disabled
The drive is rea	ady to be run.	
run	Running	Enabled
The drive is run	nning.	2.100100
SCAn	Scanning	
OL> The drive	is searching for the motor frequency	
	ising to a spinning motor.	Enabled
•	rive is enabled and is synchronising to	
the line.		
StoP	Stop or holding zero speed	
	lding zero speed.	Enabled
0	rive is enabled but the AC voltage is	
	DC bus voltage is still rising or falling.	
triP	Trip condition	Disabled
	ripped and is no longer controlling the	Disabled
motor. The trip	code appears on the lower display.	

Table 13-6 Solutions Module and SMARTCARD status indications at power-up

Lower display	Description
boot	
drive during por	t is being transferred from the SMARTCARD to the wer-up. For further information, please refer to section <i>p</i> from the SMARTCARD on every power up (Pr 11.42 = ge 153.

cArd

The drive is writing a parameter set to the SMARTCARD during powerup.

For further information, please refer to section 9.2.3 Auto saving parameter changes ($Pr \ 11.42 = Auto \ (3)$) on page 153.

loAding

The drive is writing information to a Solutions Module.

13.4 Displaying the trip history

The drive retains a log of the last 10 trips that have occurred in Pr **10.20** to Pr **10.29** and the corresponding multi-module drive module number (Pr **6.49** = 1) or the trip time (Pr **6.49** = 0) for each trip in Pr **10.41** to Pr **10.51**. The time of the trip is recorded from the powered-up clock (if Pr **6.28** = 0) or from the run time clock (if Pr **6.28** = 1).

Pr 10.20 is the most recent trip, or the current trip if the drive is in a trip condition (with the module number or trip time stored in Pr 10.41 and Pr 10.42). Pr 10.29 is the oldest trip (with the module number or trip time stored in Pr 10.51). Each time a new trip occurs, all the parameters move down one, such that the current trip (and time) is stored in Pr 10.20 (and Pr 10.41 to Pr 10.42) and the oldest trip (and time) is lost out of the bottom of the log.

If any parameter between Pr **10.20** and Pr **10.29** inclusive is read by serial communications, then the trip number in Table 13-1 *Trip indications* on page 276 is the value transmitted.

Safety	Product	Mechanical	Electrical	Getting	Basic	Running the	Ontimication	Smartcard	Onboard	Advanced	Technical	Diagnostics	UL Listing
Information	Information	Installation	Installation	Started	Parameters	motor	Optimisation	operation	PLC	Parameters	Data	Diagnostics	Information

14 UL Information

14.4 Maximum continuous output current

The drive models are listed as having the maximum continuous output currents (FLC) shown in Table 14-1, Table 14-2, Table 14-3 and Table 14-4 (see Chapter 12 *Technical Data* on page 257 for details).

Table 44.4 Merrimony continuous cutrust comment (200)(drives)

Common UL information

Conformity

14.1

The drive conforms to UL listing requirements only when the following are observed:

- The drive is installed in a type 1 enclosure, or better, as defined by UL50
- The ambient temperature does not exceed 40°C (104°F) when the drive is operating
- The terminal tightening torques specified in section 3.14.2 *Terminal sizes and torque settings* on page 65.
- If the drive control stage is supplied by an external power supply (+24V), the external power supply must be a UL Class 2 power supply

Motor overload protection

The drive provides motor overload protection. The default overload protection level is no higher than 150% of full-load current (FLC) of the drive in open loop mode and no higher than 175% of full-load current (FLC) of the drive in closed loop vector or servo modes. It is necessary for the motor rated current to be entered into Pr **0.46** (or Pr **5.07**) for the protection to operate correctly. The protection level may be adjusted below 150% if required. Refer to section 8.3 *Current limits* on page 148 for more information. The drive also provides motor thermal protection. Refer to section 8.4 *Motor thermal protection* on page 148.

Overspeed Protection

The drive provides overspeed protection. However, it does not provide the level of protection afforded by an independent high integrity overspeed protection device.

14.2 Power dependant UL information

14.2.1 Unidrive SP size 1 to 6

Conformity

The drive conforms to UL listing requirements only when the following is observed:

Fuses

Size 1 to 3

 The correct UL-listed fast acting fuses (class CC up to 30A and class J above 30A), e.g. Bussman Limitron KTK series, Gould Amp-Trap ATM series or equivalent, are used in the AC supply. The drive does not comply with UL if MCBs are used in place of fuses.

For further details on fusing, refer to in Table 4-3 and Table 4-4 on page 76.

Size 4 to 6

 The UL-listed Ferraz HSJ (High speed J class) fuses are used in the AC supply. The drive does not comply with UL if any other fuses or MCBs are used in place of those stated.

For further details on fusing, refer to Table 4-5 on page 77.

Field wiring

Size 1 to 4

 Class 1 60/75°C (140/167°F) copper wire only is used in the installation

Size 5 and 6

Class 1 75°C (167°F) copper wire only is used in the installation

Field wiring connectors

Sizes 4 to 6

 UL listed wire connectors are used for terminating power circuit field wiring, e.g. Ilsco TA series

14.3 AC supply specification

The Unidrive SP is suitable for use in a circuit capable of delivering not more than 100,000rms symmetrical Amperes at 264Vac rms maximum (200V drives), 528Vac rms maximum (400V drives) or 600Vac rms maximum (575V and 690V drives).

Table 14-1 Maximum continuous output current (200V drives)								
Model	FLC (A)	Model	FLC (A)					
SP1201	5.2	SP3201	42					
SP1202	6.8	SP3202	54					
SP1203	9.6	SP4201	68					
SP1204	11	SP4202	80					
SP2201	15.5	SP4203	104					
SP2202	22							
SP2203	28							

Table 14-2 Maximum cor	inuous output current (400V drives)
------------------------	-------------------------------------

Model	FLC (A)	Model	FLC (A)
SP1401	2.8	SP3401	35
SP1402	3.8	SP3402	43
SP1403	5.0	SP3403	56
SP1404	6.9	SP4401	68
SP1405	8.8	SP4402	83
SP1406	11	SP4403	104
SP2401	15.3	SP5401	138
SP2402	21	SP5402	168
SP2403	29	SP6401	202
SP2404	29	SP6402	236

Table 14-3 Maximum continuous output current (575V drives)

Model	FLC (A)	Model	FLC (A)
SP3501	5.4	SP3505	16
SP3502	6.1	SP3506	22
SP3503	8.3	SP3507	27
SP3504	11		

Table 14-4 Maximum continuous output current (690V drives)

Model	FLC (A)	Model	FLC (A)
SP4601	22	SP5601	84
SP4602	27	SP5602	99
SP4603	36	SP6601	125
SP4604	43	SP6602	144
SP4605	52		
SP4606	62		

14.5 Safety label

The safety label supplied with the connectors and mounting brackets must be placed on a fixed part inside the drive enclosure where it can be seen clearly by maintenance personnel for UL compliance.

The label clearly states "CAUTION Risk of Electric Shock Power down unit 10 minutes before removing cover".

14.6 UL listed accessories

- SM-Universal Encoder Plus
- SM-DeviceNet

SM-CAN

SM-PROFIBUS-DP

SM-INTERBUS

SM-CANopen

SM-Keypad

- SM-Resolver SM-Encoder Plus
- 15-way D-type converter
- SM-I/O Plus
- SM-Applications
- SM-Applications Lite
- SM-SLM

SM-Keypad Plus

List of figures

Figure 2-1	Features of the wall mounted drive17	Figure 3-32	Through-panel mounting the size 3 drive 44
Figure 2-2	Features of the free standing cubicle drive18	Figure 3-33	Through-panel mounting the size 4 drive 44
Figure 2-3	Typical drive rating labels	Figure 3-34	Through-panel mounting the size 5 drive 45
Figure 2-4	Options available with Unidrive SP20	Figure 3-35	Through-panel mounting the size 6 drive 46
Figure 2-5	Accessories supplied with size 122	Figure 3-36	Size 4, 5 and 6 mounting bracket
Figure 2-6	Accessories supplied with size 2	Figure 3-37	Orientation of the size 4, 5 and 6 mounting
Figure 2-7	Accessories supplied with size 323	C	bracket
Figure 2-8	Accessories supplied with size 424	Figure 3-38	Location of top surface mounting brackets
Figure 2-9	Accessories supplied with size 5		for size 5 and 6
Figure 2-10	Accessories supplied with size 6	Figure 3-39	Incomer shell / applications cubicle
Figure 3-1	Removing a free standing cubicle drive		dimensions
C	from packaging25	Figure 3-40	Size 8 free standing cubicle drive dimensions . 49
Figure 3-2	Lifting the free standing cubicle drive26	Figure 3-41	Size 9 free standing cubicle drive dimensions . 50
Figure 3-3	Location and identification of terminal covers27	Figure 3-42	Enclosure layout
Figure 3-4	Location and identification of terminal covers for free standing cubicle drives	Figure 3-43	Enclosure having front, sides and top panels free to dissipate heat
Figure 3-5	Removing the size 1 terminal covers	Figure 3-44	Example of IP54 (NEMA 12) rating layout 53
Figure 3-6	Removing the size 2 terminal covers	Figure 3-45	Fitting of IP54 insert for size 154
Figure 3-7	Removing the size 3 terminal covers	Figure 3-46	Fitting of IP54 insert for size 254
Figure 3-8	Removing the size 4, 5 and 6 terminal	Figure 3-47	Footprint mounting the EMC filter55
ga. e e e	covers (size 4 illustrated)	Figure 3-48	Bookcase mounting the EMC filter 55
Figure 3-9	Removing the size 8 terminal covers from	Figure 3-49	Size 4 to 6 mounting of EMC filter 55
C	the free standing cubicle drive	Figure 3-50	Size 1 external EMC filter 56
Figure 3-10	Removing the size 9 terminal covers from	Figure 3-51	Size 2 external EMC filter 56
	the free standing cubicle drive	Figure 3-52	Size 3 external EMC filter 57
Figure 3-11	Preparation for baying the incomer /	Figure 3-53	Size 4 and 5 external EMC filter 58
	applications cubicle	Figure 3-54	Size 6 external EMC filter 59
Figure 3-12	Preparation for baying the size 8 free	Figure 3-55	Through-panel mounting cut-out details for
Figure 2.12	standing drive		size 1 60
Figure 3-13	Preparation for baying the size 9 free standing drive (slave and master)	Figure 3-56	Through-panel mounting cut-out details for
Figure 3-14	Baying of cubicles		size 2 60
Figure 3-15	Baying the incomer shell / applications	Figure 3-57	Fitting the heatsink mounted braking
rigulo o lo	cubicle to a free standing cubicle drive	Figure 2 59	resistor on size 1
Figure 3-16	Baying the size 9 master and slave	Figure 3-58	Connecting the brake resistor on a surface mounted size 1
Figure 3-17	Fitting the parallel cable from a size 9	Figure 3-59	Connecting the brake resistor on a
0	master to slave	ligate o oo	through-panel mounted size 1
Figure 3-18	Removing the finger-guard break-outs	Figure 3-60	Removing the baffle plate on a size 2
Figure 3-19	Removing the DC terminal cover break-outs36	Figure 3-61	Modifying the fan baffle on a size 2
Figure 3-20	Fitting fuses to the size 8 and 9 free standing cubicle drives	Figure 3-62	Fitting the heatsink mounted braking resistor on a size 2
Figure 3-21	Removing the cable gland plate from the size 8 and 9 free standing cubicle drive for	Figure 3-63	Connecting the brake resistor on a surface mounted size 2
	"glanding off" the cable	Figure 2.64	Connecting the brake resistor on a
Figure 3-22	Fitting and removal of a Solutions Module	Figure 3-64	through-panel mounted size 2
Figure 3-23	Fitting and removal of a keypad	Figure 3-65	Locations of the power and ground
Figure 3-24	Surface mounting the size 1 drive	90.00000	terminals on wall mounted drives
Figure 3-25	Surface mounting the size 2 drive	Figure 3-66	Locations of the power and ground terminals
Figure 3-26	Surface mounting the size 3 drive40	2	on free standing cubicle drives
Figure 3-27	Surface mounting the size 4 drive40	Figure 4-1	Unidrive SP size 1 power connections 66
Figure 3-28	Surface mounting the size 5 drive41	Figure 4-2	Unidrive SP size 2 power connections
Figure 3-29	Surface mounting the size 6 drive	Figure 4-3	Unidrive SP size 3 power connections
Figure 3-30	Through-panel mounting the size 1 drive43	Figure 4-4	Unidrive SP size 4, 5 and 6 power connections 68
Figure 3-31	Through-panel mounting the size 2 drive43	Figure 4-5	Unidrive SP size 8 free standing cubicle drive power connections

Figure 4.0	Unidative OD size O frage standing such interdation
Figure 4-6	Unidrive SP size 9 free standing cubicle drive power connections70
Figure 4-7	Unidrive SP size 2 ground connections
Figure 4-8	Unidrive SP size 3 ground connections
Figure 4-9	Unidrive SP size 4, 5 and 6 ground
0	connections71
Figure 4-10	Unidrive SP size 8 and 9 free standing
	cubicle ground connections72
Figure 4-11	Location of the size 6 heatsink fan supply connections
Figure 4-12	Size 6 heatsink fan supply connections
Figure 4-13	Location of size 8 and 9 free standing cubicle
rigulo i lo	drive 24V power supply74
Figure 4-14	SP8414 24V power supply74
Figure 4-15	Cable construction influencing the capacitance 79
Figure 4-16	Preferred chain connection for multiple motors 79
Figure 4-17	Alternative connection for multiple motors80
Figure 4-18	Typical protection circuit for a braking resistor .82
Figure 4-19	Fitting of grounding clamp (size 1 and 2)83
Figure 4-20	Fitting of grounding clamp (size 3)83
Figure 4-21	Fitting of grounding bracket (sizes 1 to 6)83
Figure 4-22	Grounding link bracket in its surface mount position (as supplied)84
Figure 4-23	Grounding link bracket folded up into its through- panel mount position
Figure 4-24	Removal of internal EMC filter (size 1 to 3)84
Figure 4-25	Removal of internal EMC filter (sizes 4 to 6)84
Figure 4-26	General EMC enclosure layout showing
	ground connections85
Figure 4-27	Drive cable clearances
Figure 4-28	Feedback cable, twisted pair86
Figure 4-29	Feedback cable connections
Figure 4-30	Supply and ground cable clearance (size 1 to 3)
Figure 4-31	Supply and ground cable clearance (size 4 to 6)
Figure 4-32	Sensitive signal circuit clearance
Figure 4-33	Grounding the drive, motor cable shield and filter89
Figure 4-34	Grounding the motor cable shield
Figure 4-35	Shielding requirements of optional external
	braking resistor89
Figure 4-36	Grounding of signal cable shields using the grounding bracket90
Figure 4-37	Connecting the motor cable to a terminal block in the enclosure90
Figure 4-38	Connecting the motor cable to an isolator switch90
Figure 4-39	Surge suppression for digital and unipolar inputs and outputs91
Figure 4-40	Surge suppression for analogue and bipolar
Figure 4-41	inputs and outputs91 Location of the RJ45 serial comms connector 91
Figure 4-42	Default terminal functions
Figure 4-43	Location of encoder connector
Figure 4-44	Location of the size 4 to 6 low voltage DC
0	mode enable connections

Figure 4-45	Size 4 and 5 low voltage DC mode enable connections
Figure 4-46	Size 6 low voltage DC mode enable connections
Figure 4-47	Start / stop control EN954-1 category B - replacement of contactor101
Figure 4-48	Category 3 interlock using electromechanical safety contactors101
Figure 4-49	Category 3 interlock using Secure Disable with protected wiring
Figure 4-50	Use of contactor and relay to avoid the need for protected wiring101
Figure 5-1	SM-Keypad102
Figure 5-2	SM-Keypad Plus102
Figure 5-3	Display modes103
Figure 5-4	Mode examples103
Figure 5-5	Parameter navigation103
Figure 5-6	Menu structure104
Figure 5-7	Menu 0 Cloning104
Figure 6-1	Menu 0 logic diagram112
Figure 6-2	Fixed and variable V/f characteristics
Figure 7-1	Minimum connections to get the motor
rigule /-1	running in any operating mode for sizes
	1 to 6
Figure 7-2	Minimum connections to get the motor
U	running in any operating mode for free
	standing cubicle drives128
Figure 8-1	Motor thermal protection (Heavy Duty)148
Figure 8-2	Motor thermal protection (Normal Duty)148
Figure 8-3	Torque and rated voltage against speed149
Figure 9-1	Installation of the SMARTCARD151
Figure 9-2	Basic SMARTCARD operation151
Figure 10-1	Unidrive SP Onboard PLC program
	scheduling157
Figure 10-2	Programming options for Unidrive SP158
Figure 11-1	Menu 1 logic diagram168
Figure 11-2	Menu 2 logic diagram172
Figure 11-3	Menu 3 Open-loop logic diagram175
Figure 11-4	Menu 3 Closed loop logic diagram176
Figure 11-5	Menu 4 Open loop logic diagram180
Figure 11-6	Menu 4 Closed-loop vector logic diagram181
Figure 11-7	Menu 4 Servo logic diagram182
Figure 11-8	Menu 5 Open-loop logic diagram184
Figure 11-9	Menu 5 Closed-loop logic diagram186
Figure 11-10	Menu 6 logic diagram189
Figure 11-11	Menu 7 logic diagram191
Figure 11-12	Menu 8 logic diagram194
Figure 11-13	Menu 9 logic diagram198
Figure 11-14	Menu 12 logic diagram203
Figure 11-15	Menu 12 logic diagram (continued)204
Figure 11-16	Open-loop brake function205
Figure 11-17	Open-loop brake sequence205
Figure 11-18	Closed-loop brake function206
Figure 11-19	Closed-loop brake sequence206
Figure 11-20	Menu 13 Open-loop logic diagram208
Figure 11-21	Menu 13 Closed-loop logic diagram210

Figure 11-22	Menu 14 Logic diagram214
Figure 11-23	Location of Solutions Module slots and
	their corresponding menu numbers217
Figure 11-24	SM-Universal Encoder Plus logic diagram218
Figure 11-25	SM-Resolver logic diagram222
Figure 11-26	SM-Encoder Plus logic diagram224
Figure 11-27	SM-I/O Plus analogue logic diagram226
Figure 11-28	SM-I/O Plus digital logic diagram 1227
Figure 11-29	SM-I/O Plus digital logic diagram 2228
Figure 11-30	SM-I/O Lite & SM-I/O Timer digital I/O logic
	diagram230
Figure 11-31	SM-I/O Lite & SM-I/O Timer analogue I/O
	logic diagram231
Figure 11-32	SM-I/O Timer real time clock logic diagram231
Figure 11-33	SM-PELV digital I/O logic diagram233
Figure 11-34	SM-PELV digital input logic diagram234
Figure 11-35	SM-PELV relay logic diagram234
Figure 11-36	SM-PELV analog input logic diagram235
Figure 11-37	SM-PELV analog output logic diagram235
Figure 11-38	SM-I/O 120V digital input logic diagram237
Figure 11-39	SM-I/O 120V digital I/O logic diagram238
Figure 11-40	SM-SLM logic diagram242
Figure 11-41	Digital input connections when Pr 6.04 is
	set to 0 to 3254
Figure 13-1	Keypad status modes275
Figure 13-2	Location of the status LED275

List of tables

Table 2-1	200V Drive ratings (200V to 240V ±10%)12
Table 2-2	400V Drive ratings (380V to 480V ±10%)12
Table 2-3	575V Drive ratings (500V to 575V ±10%)14
Table 2-4	690V Drive ratings (500V to 690V ±10%)14
Table 2-5	Typical overload limits for size 1 to 515
Table 2-6	Typical overload limits for size 6 and above15
Table 2-7	Encoders compatible with Unidrive SP16
Table 2-8	Solutions Module identification20
Table 2-9	Keypad identification22
Table 3-1	Mounting brackets47
Table 3-2	Environment considerations53
Table 3-3	Power losses from the front of the drive
	when through-panel mounted53
Table 3-4	Drive EMC filter details (size 1 to 6)55
Table 3-5	Free standing cubicle drive EMC filter
	details (size 8 and 9)55
Table 3-6	Drive control and relay terminal data65
Table 3-7	Wall mounted drive power terminal data65
Table 3-8	Free standing cubicle drive terminal data65
Table 3-9	Type1 external EMC filter terminal data65
Table 3-10	Type2 external EMC Filter terminal data65
Table 4-1	Behaviour of the drive in the event of a motor
	circuit ground (earth) fault with an IT supply72
Table 4-2	Supply fault current used to calculate
	maximum input currents75
Table 4-3	Size 1 to 3 input current, fuse and cable size
	ratings (European)75
Table 4-4	Size 1 to 3 input current, fuse and cable size
Table 15	ratings (USA)
Table 4-5	Size 4 and larger input current, fuse and cable size ratings77
Table 4-6	Size 8 and 9 fuses
Table 4-7	Maximum motor cable lengths (200V drives)78
Table 4-8	Maximum motor cable lengths (400V drives)78
Table 4-9	Maximum motor cable lengths (575V drives)78
Table 4-10	Maximum motor cable lengths (690V drives)79
Table 4-10	Braking transistor turn on voltage
Table 4-11 Table 4-12	Heatsink mounted braking resistor data
Table 4-12	Minimum resistance values and peak power
Table 4-13	rating for the braking resistor at 40°C (104°F)81
Table 4-14	Unidrive SP and EMC filter cross reference83
Table 4-15	Second environment emission compliance87
Table 4-16	Connection details for RJ45 connector
Table 4-17	Isolated serial comms lead details
Table 4-18	The Unidrive SP control connections
	consist of:
Table 4-19	Encoder types
Table 4-20	Drive encoder connector details
Table 4-21	Feedback resolution based on frequency
	and voltage level98
Table 5-1	Alarm indications105
Table 5-2	Status indications105
Table 5-3	Solutions Module and SMARTCARD status
	indications on power-up105

Table	7-1	Minimum control connection requirements for each control mode124
Table	7-2	Minimum control connection requirements for each mode of operation124
Table	7-3	Parameters required for feedback device set-up
Table	7-4	Restrictions of drive encoder lines per revolution with software version V01.06.01 and later
Table	7-5	Restrictions of drive encoder lines per revolution with software version V01.06.00 and earlier
Table	8-1	Available switching frequencies for drives149
Table	8-2	Available switching frequencies for free standing cubicle drives
Table	8-3	Sample rates for various control tasks at each switching frequency
Table	9-1	SMARTCARD data blocks152
Table	9-2	SMARTCARD codes152
Table	9-3	Key to parameter table coding154
Table	9-4	Trip conditions155
Table		SMARTCARD status indications
Table	11-1	Menu descriptions160
Table	11-2	Key to parameter table coding160
Table	11-3	Feature look-up table161
Table	11-4	Definition of parameter ranges & variable maximums
Table	11-5	Maximum motor rated current for drives166
Table	11-6	Maximum motor rated current for free standing cubicle drives
Table	11-7	Defaults for Pr 10.30 and Pr 10.31 201
Table	11-8	Active reference
Table	12-1	Maximum permissible continuous output current @ 40°C (104°F) ambient for wall mounted drives
Table	12-2	Maximum permissible continuous output current @ 40°C (104°F) ambient for free
Table	12-3	standing cubicle drives258 Maximum permissible continuous output current @ 40°C (104°F) ambient with IP54
Table	12-4	insert and standard fan fitted
Table	12-4	current @ 50°C (122°F) ambient for wall mounted drives
Table	12-5	Maximum permissible continuous output current @ 50°C (122°F) ambient for free standing cubicle mounted drives260
Table	12-6	Losses @ 40°C (104°F) ambient for wall mounted drives
Table	12-7	Losses @ 40°C (104°F) ambient for free standing cubicle drives262
Table	12-8	Losses @ 40°C (104°F) ambient with IP54 insert and standard fan fitted262
Table	12-9	Losses @ 50°C (122°F) ambient for wall mounted drives263

Table 12-10	Losses @ 50°C (122°F) ambient for free standing cubicle drives
Table 10.11	Power losses from the front of the driv
Table 12-11	when through-panel mounted
Table 12-12	IP Rating degrees of protection
Table 12-13	NEMA enclosure ratings
Table 12-14	Acoustic noise data for wall mounted drives266
Table 12-15	Acoustic noise data for free standing cubicle
10010 12 10	drives
Table 12-16	Overall wall mounted drive dimensions
Table 12-17	Overall free standing cubicle mounted drive dimensions266
Table 12-18	Overall wall mounted drive weights266
Table 12-19	Overall free standing cubicle drive weights266
Table 12-20	Supply fault current used to calculate
	maximum input currents
Table 12-21	Size 1 to 3 input current, fuse and cable size ratings
Table 12-22	Size 4, 5 and 6 input current, fuse and cable
	size ratings268
Table 12-23	Size 8 and 9 fuses268
Table 12-24	Maximum motor cable lengths (200V drives) .268
Table 12-25	Maximum motor cable lengths (400V drives) .269
Table 12-26	Maximum motor cable lengths (575V drives) .269
Table 12-27	Maximum motor cable lengths (690V drives) .269
Table 12-28	Minimum resistance values and peak
	power rating for the braking resistor at 40°C (104°F)269
Table 12-29	Drive control and relay terminal data270
Table 12-30	Wall mounted drive power terminal data270
Table 12-31	Free standing cubicle drive terminal data270
Table 12-32	Immunity compliance270
Table 12-33	Size 1 emission compliance271
Table 12-34	Size 2 emission compliance271
Table 12-35	Size 3 (200V and 400V only) emission compliance271
Table 12-36	Size 4 (400V only) emission compliance271
Table 12-37	Unidrive SP and EMC filter cross reference272
Table 12-38	Free standing cubicle drive EMC filter details (size 8 and 9)272
Table 12-39	Optional external EMC filter details273
Table 12-40	Optional external EMC filter dimensions274
Table 12-41	Optional external EMC Filter terminal data274
Table 13-1	Trip indications276
Table 13-2	Serial communications look-up table
Table 13-3	Trip categories290
Table 13-4	Alarm indications
Table 13-5	Status indications291
Table 13-6	Solutions Module and SMARTCARD status
Toble 111	indications at power-up
Table 14-1	Maximum continuous output current (200V drives)
Table 14-2	Maximum continuous output current (400V drives)
Table 14-3	Maximum continuous output current (575V drives)

Index

D

Symbols

+10V user output	93
+24V external input	93
+24V user output	

Numerics

0V common	
-----------	--

Α

AC supply contactor	
AC supply requirements	72
Acceleration109, 114, 130, 131, 132	, 133, 141, 144, 174
Access	
Access Level	
Accuracy	
Acoustic noise	
Advanced menus	
Advanced parameters	
Air-flow in a ventilated enclosure	
Alarm	
Alarm Indications	
Altitude	
Analogue input 2	94
Analogue input 3	94
Analogue output 1	
Analogue output 2	94
Autotune	

В

Basic requirements	124
Braking	80
Braking resistor values	

С

Cable clearances	
Cable lengths (maximum)	
Cable size ratings	
Cable types and lengths	
Cautions	
CD ROM file contents	
Closed loop vector mode	
Control connections	
Control terminal specification	
Cooling	
Cooling method	
CTSoft	
Current limits	
Current loop gains	
Current ratings	

DC bus paralleling73 DC bus voltage	
Defaults (restoring parameter)106	
Delta motor operation80	
Derating257	
Destination parameter92	
Diagnostics	
Digital I/O 195	
Digital I/O 295	
Digital I/O 395	
Digital Input 195	
Digital Input 295	
Digital Input 395	
Dimensions (overall)	
Display	
Display messages105	
Drive enable	
Drive features16	

Е

—	
Electrical Installation	
Electrical safety26	6
Electrical terminals	3
Electromagnetic compatibility (EMC)26, 82, 270	C
EMC - Compliance with generic emission standards88	8
EMC - General requirements85	5
EMC - Variations in the wiring	9
EMC filter dimensions (external, overall)274	4
EMC filter torque settings (external)274	4
EMC filters (optional external)272	
Emission	0
EN61800-3 (standard for Power Drive Systems)87	7
Enclosure	1
Enclosure Layout51	1
Enclosure sizing51	1
Encoder connections	
Encoder feedback limits149	9
Encoder types96	6
Environmental protection	
External EMC filter	

F

Feedback device cable screening	86
Field weakening (constant power) operation	
Fieldbus module category parameters	240
Fire protection	26
Fixed V/F mode	15
Fuse ratings	
Fuse types	78

G

102
63
83
83

н

Hazardous areas	26
Heatsink mounted braking resistor	
High speed operation	149
Humidity	264

I

I/O module category parameters	226
Input current ratings	266
Input inductor calculation	73
Internal EMC filter	84
IP Rating (Ingress protection)	. 53, 265
Isolator switch	90
Items supplied with the drive	22

Κ

Keypad and display - fitting / removal3	8
Keypad operation10	2

L

Line reactors	
---------------	--

Μ

Maximum speed / frequency	
Mechanical Installation	25
Menu 0104,	
Menu 01 - Frequency / speed reference	
Menu 02 - Ramps	172
Menu 03 - Slave frequency, speed feedback and speed	
control	175
Menu 04 - Torque and current control	180
Menu 05 - Motor control	184
Menu 06 - Sequencer and clock	
Menu 07 - Analogue I/O	191
Menu 08 - Digital I/O	
Menu 09 - Programmable logic, motorised pot and binary	
sum	198
Menu 10 - Status and trips	201
Menu 11 - General drive set-up	202
Menu 12 - Threshold detectors and variable selectors	203
Menu 13 - Position control	208
Menu 14 - User PID controller	214
Menu 15, 16 and 17 - Solutions Module set-up	217
Menu 18 - Application menu 1	
Menu 19 - Application menu 2	
Menu 20 - Application menu 3	
Menu 21 - Second motor parameters	
Menu 22 - Additional Menu 0 set-up	
Menu structure	
Minimum connections to get the motor running in any	
operating mode126,	128
Mode parameter	
Model number	15
Motor (running the motor)	124
Motor cable - interruptions	90
Motor isolator-switch	90
Motor map parameters	138
Motor number of poles	
Motor rated current	146
Motor rated current (maximum)	
Motor rated frequency	
Motor rated power factor 138, 140,	
Motor rated speed	
Motor rated speed autotune141,	
Motor rated voltage	
Motor requirements	
Motor thermal protection	
Motor winding voltage	
Mounting methods	
Multiple motors	
	-

Ν

Nameplate description	
NEMA rating	53, 265
Notes	

0

Onboard PLC Open loop mode Open loop vector mode Operating mode (changing) Operating modes Optimisation	15 106, 124 15 15
	138
Output contactor	80
Output frequency	

Ρ

Parameter access level Parameter ranges	164
Parameter security Planning the installation	
Position feedback	
Position feedback module category parameters	
Power dissipation	261
Power ratings	81, 257
Power terminals	63
Precision reference Analogue input 1	93
Product information	11

Q

Quadratic V/F mode	15
Quick Start commissioning	130
Quick start commissioning	134
Quick start connections	124

R

Ratings	11, 75
Reactor current ratings	73, 264
Relay contacts	95
Residual current device (RCD)	82
Resistances (minimum)	81
Resolution	
RJ45 connector - connection details	91
Routine maintenance	65

S

Safety Information
Saving parameters
Sealed enclosure - sizing
SECURE DISABLE
Serial comms lead
Serial communications connections
Serial communications look-up table
Serial communications look-up table
Serva
Single line descriptions
Slip compensation
SMARTCARD operation
SMARTCARD trips
Solutions Module
Solutions Module - fitting / removal
Speed feedback
Speed loop gains142, 145, 147
Speed range
Star motor operation80
Start up time
Starts per hour
Status 105, 291
Status Indications
Storage
Supply requirements
Supply types72
Surface mounting the drive
Surge immunity of control circuits - long cables and
connections outside a building
Surge suppression for analogue and bipolar inputs and
outputs
Surge suppression for digital and unipolar inputs and outputs 91
Switching frequency
SYPTLite

т

Technical data	257
Temperature	
Terminal block in the enclosure	90
Terminal cover removal	26
Terminal sizes	65
Thermal protection circuit for the braking resistor	82
Through-panel mounting the drive	43
Torque settings	65, 270
Trip	275
Trip categories	290
Trip History	291
Trip Indications	275

U

UL Listing Information2	92
User Security1	07

۷

Variable maximums	164
Ventilation	53
Vibration	
Voltage mode	139
U	

W

Warnings	.10
Weights	266

Ihr Partner für elektrische Antriebe / your partner for electrical drives

R

EP ANTRIEBSTECHNIK GmbH

Fliederstraße 8 63486 Bruchköbel Telefon +49 (0)6181 9704-0 Telefax +49 (0)6181 9704-99 e-mail: info@epa-antriebe.de www.epa-antriebe.de

Postfach 1333 63480 Bruchköbel

info@epa-antriebe.de pa-antriebe.de Änderungen und Irrtümer vorbehalten. / We reserve the right to changes without further notice.